Вилли Лей - Ракеты и полеты в космос
Пришлось провести целую серию исследований, чтобы установить, что происходит в этих шашках. Оказалось, что когда шашка горела, то выделялась не только тепловая, но и световая энергия, которая, проникая в виде лучей внутрь прозрачной шашки, абсорбировалась микроскопическими частицами пыли, вкрапленной в порох. Поглощая лучи, эти частицы нагревались до такой степени, что воспламеняли порох, находившийся рядом с ними. В результате образовывались местные очаги горения, которые и приводили к характерному «растрескиванию» пороха, сопровождаемому взрывами. Именно в силу этих обстоятельств в настоящее время все шашки имеют черный цвет.
После того как были решены проблемы размеров шашки, толщины ее стенок, диаметра сопла и другие вопросы, связанные с двигателем, возникла еще одна проблема, проблема стабилизации ракеты на полете. Предыдущая практика показывала, что стабилизировать ракету можно двумя путями. Один путь был подсказан древней стрелой, другой, более современный, — винтовочной пулей. В применении к ракетам эти методы можно назвать соответственно аэродинамической стабилизацией и стабилизацией вращением. Аэродинамическая стабилизация требует создания специальных приспособлений — стабилизаторов в хвостовой части ракеты и зависит от скорости движения ракеты на активном участке траектории.
Стабилизация ракет вращением, впервые примененная Гейлом в XIX веке, может не зависеть от скорости ракеты, если для создания вращательного момента используется энергия истекающих газов. Последнее же достигается одним из двух методов: применением «газовых рулей» в потоке истекающих газов или созданием нескольких сопел, расположенных по окружности ракетной камеры с небольшим наклоном (этот метод немцы использовали в снаряде «Небельверфера»). Второй метод является лучшим, так как «газовые рули» приводят к потере мощности двигателя.
Исследование влияния количества вращательного движения на точность полета ракеты осуществлялось отделом Национального исследовательского комитета по оборонным мероприятиям США, ведавшим разработкой ракетного артиллерийского вооружения. Метод исследования предложил Р. Мэллина, который в то время был занят проектированием ракет для фирмы «Белл Телефон Лэборотрис». Его идея заключалась в том, чтобы запустить ракету без всяких стабилизаторов из вращающейся пусковой трубы. Это давало возможность испытывать одну и ту же ракету при разных вращательных моментах. Предложение было немедленно принято, и была построена специальная пусковая установка, состоявшая из пусковой трубы, установленной на больших шариковых подшипниках,, помещенных в неподвижной трубе. Вся установка имела механизмы вертикальной и горизонтальной наводки, как у обычного орудия. Вращение внутренней пусковой трубы обеспечивалось электромотором мощностью в 1,5 л. с.; она могла вращаться со скоростью 800, 1400 и 2400 об/мин.
В результате опытов было установлено, что даже при умеренной скорости вращения достигается значительное уменьшение рассеивания ракет и что скорость вращения не является критическим фактором устойчивости. Рассеивание невращающихся стандартных ракет составляло 0-39 угломера, то есть на дистанции 1000 м такая ракета отклонялась на 39 м, а при стрельбе ракетами, вращающимися со скоростью 800, 1400 и 2400 об/мин, рассеивание уменьшалось соответственно до 0-13, 0-11 и 0-9 делений угломера. Для изучения влияния вращательного движения на другие ракеты, имевшие очень большое рассеивание, было проведено 25 таких запусков при скорости вращения пусковой трубы порядка 2400 об/мин. Рассеивание составило 0-13 угломера. Когда такие же ракеты были запущены из невращающейся пусковой трубы длиной 3,3 м, рассеивание увеличилось до 0-78[19]
Однако лишь несколько американских вращающихся ракет было применено на поле боя (см. Приложение II). Большая же часть американских ракет периода второй мировой войны стабилизировалась при помощи аэродинамических стабилизаторов. Весьма распространенным среди этих ракет был снаряд реактивного противотанкового ружья «Базука». Первые ракеты «Базука» имели существенные конструктивные недостатки. Имели место частые разрывы ствола при стрельбе в жаркие дни, но после того как заряд уменьшили, он хорошо работал в жаркую и теплую погоду, а в холодные дни по-прежнему отказывал. Когда наконец был отработан заряд, хорошо действовавший при любых температурах, появились жалобы на то, что пусковая труба слишком длинна и неудобна для применения в лесу и на пересеченной местности. Но пусковая труба должна была быть длинной, так как было необходимо, чтобы весь пороховой заряд сгорал до вылета ракеты из трубы, иначе факел ракетного двигателя мог обжечь наводчику лицо. Эта частная проблема была позднее решена очень просто, путем создания складывающейся пусковой трубы.
Впервые на поле боя «Базука» была применена в Северной Африке. Когда в начале 1943 года генерал-майор Л. Кемпбелл сообщил о существовании у союзников этого оружия и пояснил, что небольшая ракета, весящая всего несколько килограммов, может уничтожить танк, многие подумали, что такая ее эффективность объясняется высокой скоростью ракетного снаряда. В действительности же ракета «Базука» движется очень медленно; ее можно видеть на всем протяжении траектории от пусковой трубы до цели. Секрет высокой пробивной силы не имел ничего общего с тем фактом, что «Базука» была снабжена ракетным двигателем; он скрывался в заостренной боевой головке ракеты, где был помещен кумулятивный заряд.
Этот заряд был изобретен американским специалистом по взрывчатым веществам профессором Чарльзом Мунро. В 1887 году, экспериментируя со взрывчатыми веществами, Мунро заметил совершенно новое и поразительное явление. Один из образцов взрывчатого вещества, которое он испытывал, представлял собой диск пироксилина с вырезанными на нем буквами и цифрами—«USN 1884», обозначавшими место и время его изготовления. Мунро подорвал этот диск пироксилина рядом с тяжелой бронированной плитой. Как он и ожидал, ущерб, нанесенный бронированной плите, был незначительным, но буквы и цифры «USN 1884» оказались вырезанными в металле! Ничего подобного никогда не наблюдалось. Это странное явление могло быть объяснено только тем, что взрывчатый заряд не прилегал плотно к металлу в местах, где были вырезаны буквы и цифры. Мунро заключил, что сочетание небольшого воздушного пространства и плотно прилегающего к металлу взрывчатого вещества вокруг данного воздушного пространства, вероятно, и было причиной этого явления. Чтобы проверить свою догадку, он взял связку динамитных палочек и крепко связал их вместе, а несколько центральных палочек втянул внутрь на 2 см. Полученный заряд легко пробил отверстие в толстой стенке банковского сейфа. В 1888 году профессор Мунро написал о своем открытии несколько статей, и с тех пор это явление получило название «эффект Мунро», который объяснялся фокусирующим действием продуктов взрыва заряда.
При наблюдении со стороны взрыв кумулятивного заряда подобен взрыву любого другого заряда: энергия взрыва распространяется равномерно во всех направлениях, но внутри воздушной полости газы, освобожденные взрывом, фокусируются, то есть собираются в узкую струю, обладающую большой пробивной силой (рис. 32).
Рис. 32. Кумулятивный заряд Мунро американской гранаты М9А1 (стрелками показано направление действия взрыва)
Военные исследования по кумулятивным зарядам не проводились до второй мировой войны, когда была создана металлическая облицовка кумулятивной воронки в заряде. Если эффект Мунро проявлялся как действие высокоинтенсивной струи раскаленных газов, выбрасываемых в одном направлении, то было совершенно ясно, что пробивную силу этой струи можно усилить, если каким-либо образом увеличить ее массу. Предполагалось, что слой металла, покрывавший воронку, будет разорван взрывом на небольшие осколки, которые увеличат массу газов. Вскоре это предположение было подтверждено экспериментальным путем, причем наиболее эффективными в качестве облицовочного материала воронки были признаны цинк и сталь.
Эффект Мунро зависит не только от наличия полости во взрывчатом веществе и металлической облицовки, но также и от расстояния между зарядом и целью в момент взрыва. Это расстояние должно быть равно нескольким сантиметрам. По этой причине кумулятивный заряд при больших скоростях встречи становится малоэффективным, так как для срабатывания взрывателя и взрыва заряда необходимо какое-то время. Ракета «Базука» вполне подходила по скорости для кумулятивного заряда. Другой американской ракетой, снабженной кумулятивным зарядом, не считая усовершенствованных вариантов той же ракеты «Базука», являлась разработанная наспех для войны в Корее ракета «Рэм».