Владимир Поляков - Посвящение в радиоэлектронику
В технике часто используют принципы, уже известные, выдвинутые давным-давно или подсказанные самой природой. В рассматриваемом случае подходят два принципа: мышеловки и горки. Обобщенный принцип мышеловки заключается в следующем: некоторая дверца открывается легко, если двигаться с одной стороны, и не открывается — если двигаться с другой. Этот принцип используется в любом клапане, например в клапане насоса для накачивания волейбольного мяча.
Электронная лампа — тоже клапан. Выпрямить переменный ток может самая простая двухэлектродная лампа — диод, — содержащая анод и катод. Носители заряда — электроны — излучаются накаленным катодом и двигаются к аноду только тогда, когда он заряжен положительно. При этом через диод проходит электрический ток. Если же на аноде отрицательный потенциал, электроны отталкиваются и тока через диод нет. Если на анод диода подать переменное напряжение, а последовательно с диодом включить нагрузку, то в цепи нагрузки будет проходить пульсирующий ток одного направления, т. е. уже почти постоянный. Для уменьшения пульсаций тока параллельно нагрузке включают сглаживающие конденсаторы или используют многофазные схемы выпрямителей. Долгие годы вакуумный диод был единственным прибором для выпрямления переменного тока. У него было много недостатков. Трудно получить большой ток: нужен мощный катод, излучающий большой поток электронов, а на его накал тратится большая мощность. Анод под ударами электронов тоже сильно разогревается. В результате вакуумная двухэлектродная лампа — кенотрон — не может выпрямить ток с высоким коэффициентом полезного действия. Для питания радиопередатчиков и других мощных установок изобрели газонаполненные диоды — газотроны, дуговые лампы, «поджигаемые» только во время положительных полуволн переменного напряжения, и многое другое. Но главная проблема — снижение мощности, рассеиваемой внутри выпрямителя, — оставалась нерешенной. Поэтому, например, до последнего времени и не было электровозов, работающих на переменном токе, поскольку не было эффективных выпрямителей.
Выпрямитель на вакуумной лампе — кенотроне.
Но разговорившись о ламповых выпрямителях, мы как-то забыли про другой принцип получения однонаправленного движения — принцип горки. Катиться с горки легко, а взбираться трудно. А если горка очень крутая и скользкая то просто невозможно. Похожим принципом пользовались еще первобытные охотники, устраивая ямы-ловушки. Зверь может упасть в яму, и выбраться из нее ему уже вряд ли удастся.
Яма-ловушка.
А что если и для электрических зарядов устроить такую горку, разумеется электрическую, чтобы они легко скатывались под горку, но не могли выбраться назад? Подобная горка называется потенциальным барьером. Он обязательно образуется в месте контакта двух веществ с различными типами проводимости-дырочным (p-тип) и электронным (n-тип). Веществами могут быть полупроводник p-типа и металл или два полупроводника р- и n-типов проводимости.
Вот как это происходит. В веществе с проводимостью n-типа избыток свободных электронов, а в веществе с проводимостью p-типа, напротив, электронов не хватает. Разумеется, электроны устремляются оттуда, где «густо», туда, где «пусто». А дырки двигаются в противоположном направлении. Очень образный пример, иллюстрирующий природу и движение электронов и дырок, приведен в учебнике физики для вузов Г. А. Зисмана, О. М. Тодеса: электрон можно представить как капельку воды над поверхностью, а дырку — как пузырек воздуха под ней. Одна и та же сила тяжести заставляет капельку двигаться вниз, а пузырек воздуха — вверх. Подобным же образом электроны и дырки перемещаются в противоположных направлениях под действием одного и того же электрического поля.
Контакт р- и n-полупроводников назван р-n переходом. Итак, дырки и электроны двинулись через переход. Долго ли будет продолжаться их движение? Наверно, нет. Как и на любом перекрестке, должен вспыхнуть красный свет, прекращающий движение по переходу. Ведь в результате движения зарядов p-область получает отрицательный. заряд, а n-область — положительный. В точке контакта возникает электрическое поле, препятствующее (как красный свет светофора) дальнейшему движению. Теперь дыркам, чтобы попасть в n-область, надо забраться на потенциальную горку высотой Δφ, т. е. преодолеть потенциальный барьер. То же самое относится и к электронам: поскольку они отрицательны, то и горка со склоном вниз для них препятствие. Значение Δφ определяется только свойствами веществ, образующих переход, и еще немного зависит от температуры.
А вот теперь начинается самое интересное. В любом полупроводниковом диоде есть р-n переход. Собственно, кроме перехода диод имеет лишь корпус и выводы. Диод пропускает ток только в одном направлении. Давайте мысленно поэкспериментируем. Приложим внешнее напряжение «плюсом» к n-области, а «минусом» — к p-области. Этим мы только увеличим высоту горки или потенциального барьера. При этом всякое движение зарядов через переход прекратится и тока в цепи не будет. Поменяем полярность внешнего напряжения. Это уменьшит высоту потенциального барьера, и, следовательно, уже ничто не будет мешать носителям заряда двигаться через переход, т. е. в цепи появится электрический ток.
Потенциальный барьер, образующийся в р-n переходе.
Полупроводниковый диод пропускает ток только в одном направлении. Это направление называется прямым, а ток — прямым, или отпирающим. Допустимое значение прямого тока определяется площадью контакта и для мощных диодов может составлять десятки ампер. В то же время значение обратного тока обычно пренебрежимо мало и исчисляется микроамперами. Если нужно выпрямить еще больший ток, несколько полупроводниковых диодов соединяют параллельно.
Полупроводниковый диод пропускает ток только в одном направлении.
Схема простейшего выпрямителя на полупроводниковом диоде мало отличается от приведенной схемы выпрямителя с кенотроном. Она даже упрощается — становится ненужной обмотка силового трансформатора, питающая накал лампы. Но у такого выпрямителя, называемого однополупериодным, есть недостаток: ток в нагрузку течет лишь во время одного полупериода переменного напряжения.
Однополупериодный выпрямитель.
Чтобы «заставить работать» и второй полупериод, устанавливают второй диод и наматывают еще одну обмотку (вторичную) силового трансформатора. Напряжения на диодах UA и UB имеют противоположную полярность, они противофазны. Поэтому диоды выпрямителя работают поочередно: когда один диод проводит ток, другой заперт, и наоборот. У нас получился двухполупериодный выпрямитель. Ток в нагрузке теперь пульсирует с частотой 100 Гц, а не 50, как ранее.
Двухполупериодный выпрямитель.
В простейших случаях пульсации устраняются конденсатором большой емкости, когда же требуется более точное сглаживание, используют фильтр нижних частот.
Сглаживающий фильтр.
Аналогичными свойствами обладает и мостовая схема выпрямителя. В ней используются четыре диода, зато нужна только одна вторичная обмотка трансформатора. Ток в нагрузке мостового выпрямителя имеет точно такой же вид, как и у двухполупериодного. Специально для мостовых выпрямителей выпускаются блоки из четырех диодов в одном корпусе.
Мостовой выпрямитель.
Полупроводниковые диоды легки, компактны и отличаются очень высоким КПД. Область их применения обширна — от детектирования слабых сигналов в радиоприемнике до выпрямления тока при мощностях в сотни киловатт в грузовых электровозах. Теперь на вопрос, поставленный в заголовке раздела, мало-мальски сведущие в электронике люди ответят: «Выпрямить переменный ток? Разумеется, нет ничего проще!».
Триод из… полупроводника?
Инженерам, воспитанным на электровакуумной технике, эта мысль казалась нелепой еще в 50-х годах. Ведь триод — это радиолампа, содержащая катод, анод и управляющую сетку. Потенциал сетки управляет анодным током, и благодаря этому эффекту получают усиление сигналов. Вот как это делается: входное напряжение сигнала прикладывают между сеткой и катодом. Для того чтобы случайные электроны, осевшие на сетке, отправлялись обратно к катоду, включают резистор утечки сетки Rg. В анодную цепь последовательно с источником питания включают резистор нагрузки Ra. Под действием входного напряжения изменяется анодный ток. Каждую лампу характеризуют рядом параметров, в том числе и крутизной характеристики S = ΔIa/Δug - величиной, показывающей, на сколько изменится анодный ток при изменении потенциала сетки на 1 В. Принцип «чем больше, тем лучше» оправдывается и здесь. Обычно стремятся получить максимальную крутизну характеристики в рабочей точке, т. е. при заданных напряжениях на электродах. Анодный ток, проходя через резистор нагрузки, создает на нем некоторое падение напряжения. Его постоянная составляющая обычно не используется, а вот изменения, вызванные изменениями анодного тока, служат полезным выходным сигналом Uвых = ΔIa·Ra. Выразите изменения анодного тока через изменения сеточного напряжения Δug = Uвх и подставьте в последнюю формулу.