Сергей Семиков - Баллистическая теория Ритца и картина мироздания
Рис. 38. Отказ принципа относительности в опытах Физо (слева) и Саньяка (справа).
Как видим, наличие среды нарушает равноправие систем отсчёта. Во-первых, свет в среде движется со скоростью, отличной от скорости света в этой среде c/n. А, во-вторых, не вся скорость источника передаётся свету. Но реально здесь нет никакого противоречия с галилеевым принципом относительности. Рассмотрим для пояснения известную иллюстрацию принципа относительности, предложенную самим Галилеем. В своём "Диалоге" он показал, что мы не сможем заметить равномерного движения корабля, находясь в его трюме. Предметы в трюме будут падать совершенно так же (отвесно вниз), как в неподвижном корабле. Происходит это оттого, что скорость v корабля сообщается падающим предметам. Но если и сам корабль и падающие в нём предметы движутся по горизонтали со скоростью v, то их относительное движение нельзя заметить. Но так будет только в трюме. Если мы выйдем на палубу корабля, то равноправие уже нарушается. За счёт движения корабля обдувающий его воздух порождает встречный ветер, который нарушает симметрию, увлекает предметы. Поэтому брошенные от носа к корме предметы, увлекаемые ветром, будут долетать быстрее и дальше, чем от кормы к носу. Подобно воздуху, увлекающему в опыте Галилея падающие предметы, среда передаёт частично скорость и свету. В опыте Майкельсона среда не нарушала принцип относительности и баллистический принцип лишь потому, что атмосфера двигалась вместе с Землёй и источником света, так же как воздух в трюме корабля двигался вместе с кораблём в опыте Галилея. Зато при взаимном движении источника и среды ситуация кардинально меняется: принцип относительности перестаёт соблюдаться.
Итак, если движущийся источник сообщает свою скорость свету, в качестве добавки к скорости c, то, при попадании в прозрачную среду, за счёт вторичного излучения среды и сложения его с излучением падающей волны, эта добавка постепенно исчезнет, как постепенно теряет горизонтальную скорость предмет, выброшенный из окна поезда и тормозимый сопротивлением воздуха. Исходная волна, попадая в среду и заставляя колебаться её электроны, переизлучается этими бесчисленными ретрансляторами и, при том, гасится за счёт интерференции с идущими от них вторичными волнами. Этот принцип известен в электродинамике как "теорема погашения Эвальда и Озеена". Однако в применении к БТР эта теорема была впервые исследована Дж. Фоксом [2], который показал, что, вместе с гашением первичной волны, теряется также информация о скорости её источника. Поэтому, в дальнейшем будем иногда называть это правило погашения у света добавочной скорости источника — "принципом Фокса". Этот принцип имеет большое значение в изучении многих явлений космоса и особенно важен в земных лабораторных экспериментах.
Интересно отметить, что некоторые лабораторные эксперименты действительно подтвердили, что свет после прохождения сквозь среду приобретает её скорость. Ведь, согласно БТР, скорость равна c относительно источника. Среда же, через которую проходит свет, сама начинает играть роль источника света. И точно, как показали уже земные эксперименты, скажем опыты У. Кантора [4] и М.И. Дуплищева [47], прозрачные пластинки дополнительно сообщают свою скорость v излучению, отчего скорость световых лучей становится не c, а c+v. Результаты этих экспериментов, несмотря на их тщательную постановку, пытались оспорить и затушевать [153]. Однако достаточно убедительно этого никто не сделал.
Физики пытались обнаружить изменение скорости света не только у земных источников, но и у небесных, имеющих известные скорости. Подобный опыт, выполненный, например Р. Томашеком, дал отрицательный результат [152, 153]. Как заметил Дж. Фокс, это тоже не свидетельствует против БТР, поскольку в наземной установке свет движется не в вакууме, а в атмосфере, следуя в приборе дополнительно ещё через систему линз и зеркал. А потому принцип относительности и закон сложения скоростей здесь не применимы, так же как в опыте Галилея, если производить его не в трюме, а на палубе движущегося корабля, где предметы уже не будут падать строго по вертикали, как прежде, а будут сноситься ветром. Вот и свет, имея избыточную скорость V источника, уже не может сохранить её в земной атмосфере, но будет "тормозиться" ею, пока не приобретёт относительно среды стандартную скорость c/n. Так же, к примеру, зажигалка, выроненная из окна бегущего по рельсам поезда, лишь поначалу падает отвесно вниз, имея скорость поезда V. Но затем обдув встречным потоком воздуха постепенно сносит её назад, и она почти полностью утрачивает начальную скорость V.
То же и для света. Когда световой луч на скорости c+V входит в земную атмосферу, то его электрические колебания раскачивают электроны в атомах воздуха. Вибрация электронов рождает вторичное излучение, имеющее скорость c. В итоге, по мере движения луча через атмосферу и приведения им в колебания всё новых электронов, его энергия всё больше рассеивается, переходя в энергию вторичного излучения, летящего в воздухе со стандартной скоростью c. Как показал Фокс, такое приведение скорости света к c происходит в слое воздуха толщиной около 10 см. Так что к моменту, когда световой луч пройдёт всю толщу атмосферы, его скорость окажется равной c без всяких следов начальной скорости источника. Ещё эффективней скорость источника гасится при движении излучения более высоких частот и в более плотных средах. Фокс вычислил [2], что вклад скорости источника в скорость света экспоненциально спадает по мере движения сигнала в среде, причём характерная длина, на которой этот вклад снижается в e=2,7 раз, составляет d=λ/2π(n–1). То есть погашение вклада скорости источника идёт тем быстрее, чем короче длина волны света λ и выше показатель преломления среды n. Поэтому сигнал от источника, летящего в направлении излучения со скоростью V, при прохождении слоя среды толщиной l, будет иметь скорость c'=c+kV, где k=e—l/d<<1, как вывели на основе астрономических наблюдений ещё Э. Фрейндлих [3] и П. Гутник (§ 2.10). Таким образом, скорость источника практически перестаёт влиять на движение световых сигналов в среде, и обнаружить изменение скорости света можно только в высоком и сверхвысоком вакууме, в отсутствие на пути луча зеркал, линз и сред.
Не случайно, многие эксперименты по проверке баллистического принципа, выполненные в земных условиях, особенно с применением линз, диафрагм или зеркал, дали мнимое противоречие с БТР. Такие эксперименты неизменно показывали, что свет покоящегося и подвижного источников летит с одной и той же скоростью c. А, на деле, свет испускался с разными скоростями, но за счёт переизлучения неподвижными атомами сред, зеркал и линз эта разница быстро стиралась, и детекторы фиксировали синхронный приход световых сигналов. Примечателен в этом плане опыт А.С. Мазманишвили ("Электромагнитные явления", Т.2, № 1, 2001 г.), выполненный по инициативе П.И. Филиппова (полковника артиллерии и защитника БТР), но вопреки его ожиданиям не выявивший зависимости скорости света от движения электронов в ускорителе и накопителе частиц. Опыт показал, что прямой импульс синхротронного излучения, созданный летящими с огромной скоростью электронами, и контрольный импульс, переизлучённый неподвижным кварцевым окошком, приходят к детекторам синхронно, без дополнительной задержки от разницы скоростей света. Это сочли опровержением БТР и доказательством СТО.
А, на деле, даже в таком, на первый взгляд, безупречном опыте, проведённом в условиях вакуума внутри камеры ускорителя и в отсутствие на пути прямого луча линз и зеркал, не исключён эффект переизлучения. Так, надо принять в расчёт влияние металлических диафрагм и протяжённых каналов-волноводов на пути прямого луча — их неподвижные стенки вполне могут служить переизлучающими центрами, рождающими то же излучение, но со скоростью c уже не относительно электрона, а относительно самой установки, а потому приходящее к детектору одновременно с контрольным лучом. Кроме того, не исключено, что синхротронное излучение генерируют не столько движущиеся электроны, сколько неподвижные металлические стенки ускорителя (накопителя), в которых стремительно несущиеся заряды наводят токи и вызывают колебания электронов, порождая излучение, как в эффекте Вавилова-Черенкова. Это и многое другое (§ 1.11, § 1.15, § 1.21) показывает, что принципы работы ускорителей, накопителей частиц, гиротронов и прочей релятивистской электроники не противоречат, а скорее подтверждают БТР.