KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Техническая литература » Александр Куличков - Импульсные блоки питания для IBM PC

Александр Куличков - Импульсные блоки питания для IBM PC

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Куличков, "Импульсные блоки питания для IBM PC" бесплатно, без регистрации.
Перейти на страницу:

Пример силового каскада, выполненного по автогенераторной схеме, представлен на рис. 1.3.

Рис. 1.3. Схема однотактного автогенераторного преобразователя с обратным включением диода

Каскад выполнен на транзисторе по схеме релаксационного импульсного генератора. Схема содержит один трансформатор TV, на котором размещены все обмотки. Входное напряжение питания Uп поступает на коллектор транзистора VT через первичную обмотку W1 трансформатора TV. Сигнал обратной связи подается на базу транзистора VT с обмотки W3. Начало каждой обмотки обозначено точкой. Ко вторичной обмотке W2 последовательно подключены выпрямительный диод VD, конденсатор С и условная нагрузка Кн. Важной особенностью выполнения однотактных преобразователей является способ подключения выпрямительного диода во вторичной цепи. Способ подключения диода, согласно рис. 1.3, называется обратным, так как диод VD открывается при закрытом транзисторе VT и закрывается при открывании транзистора VT. Ток коллектора транзистора VT при этом имеет форму, показанную на рис. 1.4.

Рис. 1.4. Форма тока коллектора транзистора в схеме автогенераторного преобразователя с обратным включением диода

Автогенераторный преобразователь работает следующим образом. В начальный момент времени при подаче напряжения питания Uп на схему через резистор Ксм на базу транзистора VT поступает отпирающий положительный потенциал. Транзистор начинает открываться, через него и первичную обмотку W1 трансформатора TV протекает нарастающий ток, который вызывает увеличение магнитного потока в сердечнике трансформатора. При этом в обмотке обратной связи W3 наводится ЭДС самоиндукции. Обмотки W1 и W3 подключаются к элементам схемы таким образом, что наведенная в обмотке W3 ЭДС способствует отпиранию транзистора VT. Резистор Rб определяет ток, протекающий через базовый переход транзистора VT. Когда ток коллектора транзистора VT достигает максимального значения, нарастание магнитного потока в сердечнике трансформатора TV прекращается. Полярность напряжения на обмотке обратной связи W3 меняется на противоположную, и транзистор VT запирается.

В зависимости от полярности подключения выпрямительного диода VD во вторичной цепи изменяется способ передачи энергии в нагрузку. В ВЧ преобразователе, собранном согласно рис. 1.3, при открытом транзисторе VT к первичной обмотке приложено напряжение Uп – Uк.нас. Во вторичную обмотку происходит передача импульса длительностью tи (см. рис. 1.4.). В этот момент положительное напряжение оказывается приложенным к закрытому диоду VD, который отключает вторичную обмотку от нагрузки.

В течение времени tп (время паузы), то есть когда транзистор VT закрыт, полярность напряжения во всех обмотках меняется на противоположную, диод VD открывается и напряжение с обмотки W2 поступает на фильтр (конденсатор С) и нагрузку, при этом конденсатор С заряжается. Конденсатором С накапливается энергия, расходуемая во время следующего цикла, когда транзистор снова открывается, а выпрямляющий диод VD запирается. Таким образом обеспечивается протекание через нагрузку постоянного тока. Сглаживающий фильтр образуется конденсатором C и индуктивностью вторичной обмотки W2 трансформатора TV.

На рис. 1.5 представлена схема подключения нагрузки с прямым включением выпрямительного диода (рис. 1.5а) и форма коллекторного тока (рис. 1.5б), соответствующая данной схеме.

Рис. 1.5. Схема включения нагрузки с прямым включением диода (а) и форма тока коллектора транзистора преобразователя (б)

В схеме (см. рис. 1.5а) энергия передается в нагрузку синхронно с открыванием силового транзистора – интервал tи (см. рис. 1.5б).

Эквивалентные схемы, поясняющие процессы, протекающие в каскаде с прямым включением диода, изображены на рис. 1.6.

Рис. 1.6. Эквивалентные схемы вторичной цепи каскада с прямым включением диода

На рис. 1.6 транзистор представлен в виде ключа SW1, который включается и выключается в определенные моменты времени (стрелками указано направление протекания тока).

В момент открывания транзистора и передачи энергии во вторичную цепь (как показано на эквивалентной схеме рис. 1.6а, где LC фильтр и нагрузка подключены к источнику напряжения Uп) ток Iн, протекая в нагрузку Rн через дроссель Lф, входящий в состав фильтра, запасает в нем энергию. Величину накопленной энергии можно вычислить по формуле:

W = 0,5 Lф Iн2 tи

Конденсатор сглаживающего фильтра C в течение действия импульса tи (при замкнутом ключе SW1) заряжается до напряжения Uн.

Во время паузы tп, когда энергия от первичного источника не подается (см. рис. 1.6б, ключ SW1 разомкнут), запасенная в дросселе Lф энергия поступает в нагрузку Rн. Замкнутый контур (протекание тока нагрузки Iн) образуется цепью из дросселя Lф (нагрузки Rн) блокирующего диода VD2.

Длительности импульсов (времени открытого состояния силового транзистора) и пауз в однотактных преобразователях определяются напряжением питания сети, индуктивными параметрами обмоток высокочастотного трансформатора и могут быть рассчитаны по формулам:

tи = Ik max L1 / Uп (1.1)

tп = Ik max L2W1 / UнW2  (1.2)

Из приведенных соотношений видно, что в общем случае длительности импульса tи и паузы tп не равны. В течение всего цикла работы ВЧ преобразователя через обмотки трансформатора в противоположных направлениях протекают токи, которые воздействуют на сердечник трансформатора, перемагничивая его. Так как длительности действия импульса и паузы не совпадают, не происходит и полной взаимной компенсации магнитных потоков, и сердечник постепенно намагничивается посредством наиболее длительного сигнала. Снижаются его магнитная проницаемость, уменьшается индуктивность трансформатора, эффективность работы преобразователя падает. В этом случае нужно применять либо магнитопроводы с заведомо увеличенной мощностью рассеяния, что приведет к неоправданному возрастанию габаритов источника питания, либо, что более правильно, специальные меры по устранению или компенсации эффекта подмагничивания.

На практике используется несколько вариантов принудительного компенсационного подмагничивания сердечника с помощью технологических приемов или дополнительно установленных элементов. Одним из способов является выполнение сердечника трансформатора на магнитопроводе с небольшим воздушным зазором. Однако это не всегда удобно и технологично, особенно в трансформаторах на кольцевых сердечниках. В качестве элемента для дополнительного перемагничивания может служить блокировочный конденсатор, устанавливаемый параллельно первичной обмотке трансформатора. Во время паузы, когда транзистор закрывается, конденсатор постепенно разряжается через первичную обмотку трансформатора. Разрядный ток создает магнитный поток, который перемагничивает сердечник. Величина этого конденсатора должна быть такой, чтобы длительность паузы составляла не менее четверти периода колебаний контура, образованного индуктивностью первичной обмотки трансформатора L1 и емкостью блокировочного конденсатора Сбл.

В преобразователях с прямым включением диода для устранения намагничивания сердечника трансформатора может быть использована дополнительная цепь, состоящая из диода и обмотки, намотанной на тот же сердечник. Фрагмент принципиальной схемы силовой цепи такого ВЧ преобразователя представлен на рис. 1.7.

Рис. 1.7. Схема силового каскада ВЧ преобразователя с размагничивающей обмоткой силового трансформатора

В данном случае размагничивающая обмотка включена последовательно с диодом VD3. Обязательно обратите внимание на ее подключение к элементам схемы, обозначенное точками у начала обмотки.

В момент закрывания силового транзистора часть накопленной в трансформаторе энергии возвращается в источник питания через диод VD3. Величина тока, проходящего через возвратный диод VD3, обратно пропорциональна числу витков подключенной к нему компенсационной обмотки. Поэтому для снижения импульсного тока, протекающего через этот диод, можно увеличивать число ее витков. Однако при этом должно выполняться следующее соотношение чисел витков компенсационной и коллекторной обмоток:

W12 / W11 ≤ tп / tи (1.3)

Завершая описание и сравнение схем однотактных преобразователей с прямым и обратным включением выпрямительного диода в цепи нагрузки, приведем выражение для определения величин соответственно максимального импульсного тока коллектора Iки силового транзистора и тока, протекающего через первичную обмотку импульсного трансформатора. Для преобразователя с прямым включением диода оно имеет вид:

Максимальный импульсный ток транзистора для каскада с обратным включением диода рассчитывают по соотношению:

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*