KnigaRead.com/

Д. Соболев - История самолётов 1919 – 1945

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Д. Соболев, "История самолётов 1919 – 1945" бесплатно, без регистрации.
Перейти на страницу:

В 20-е годы авиация стала играть заметную роль не только в военной сфере, но и в мирной жизни. Кроме пассажирских и почтовых перевозок самолеты начали использовать в медицине как транспортное средство для срочной врачебной помощи, сельском хозяйстве (опыление посевов), для тушения лесных пожаров, для спасения людей на море, для географических и метеорологических исследовании. Во многих странах авиапромышленность стала одной из основных технических отраслей. Особенно интенсивно развитие авиационного производства происходило во второй половине 20-х годов. Только за 1925–1929 гг. в мире было построено более 50 тысяч самолетов, 3/4 из них составляли военные машины [76, с. 579]. Затраты на авиацию в 1930 г. составляли: в Англии — 8202 тыс. фунтов стерлингов (около 200 млн. рублей по курсу того времени), во Франции — 750 млн. франков (100 млн. руб.), в США — 38549 тыс. долларов (190 млн. руб.) [1, с. 61].

Если вначале развитие авиации основывалось на достижениях других видов техники (двигателестроение, судостроение и т. д.), то в 20-е годы авиационная техника сама начала оказывать влияние на общий научно-технический прогресс. Успешное продвижение авиации требовало развития новых специальных производств, создания новых материалов. Впоследствии эти новшества находили применение во многих областях техники. Так, например, в 20-е — 30-е годы авиационные материалы — дюраль, высокопрочные легированные стали — были использованы в транспортном машиностроении (корпуса кораблей, автомобилей, вагонов) и в станкостроении. Результаты авиационных аэродинамических исследований начали применять при создании скоростного наземного транспорта, при проектировании крупных зданий и инженерных сооружений. Методы прочностного расчета, позволявшие создавать прочные и легкие конструкции, стали использовать во многих областях общего машиностроения. Это лишь некоторые примеры.

Если сравнивать послевоенное пятнадцатилетие с другими этапами в истории авиации, его можно охарактеризовать, в целом, как этап экстенсивного развития. И все же, как следует из данной главы, это был заметный шаг в эволюции авиационной техники.

ГЛАВА 2. НА ПУТИ К СКОРОСТНОЙ АВИАЦИИ

Условием прогресса техники является опережающее развитие научно-исследова- тсльской деятельности. В 20-е годы авиация развивалась, главным образом, на основе научных достижений периода первой мировой войны. В свою очередь, научно-исследовательские и опытно-конструкторские работы, проводившиеся в 20-е годы, создали предпосылки для качественного скачка в эволюции самолетов в 30-е годы. Данная глава посвящена истории научных открытий и технических изобретений, оказавших революционное влияние на прогресс в авиационной технике в первой половине 30-х годов.

* * *

Как известно, в 20-е годы в конструкции самолетов использовались три основных типа обшивки: а) полотняная, не предназначенная для восприятия нагрузок; б) тонкая металлическая гофрированная поверхность, способная выдерживать только нагрузки на кручение; в) фанерная обшивка, которая, наряду с нервюрами и лонжеронами, участвовала в восприятии всех видов нагрузок в полете («работающая обшивка»).

Гладкая работающая обшивка, в отличие от гофра, не увеличивала общую («смачиваемую») поверхность и, по сравнению с полотном, не провисала и не образовывала неровностей, а участие в восприятии нагрузок должно было обеспечивать меньший вес внутренней силовой конструкции. Однако на практике происходило по другому: из-за отсутствия надежных методов расчета тонкостенной подкрепленной оболочки (чем, с точки зрения прочнистов, является крыло с работающей обшивкой) ее вес оказывался намного больше, чем в случае использования полотняной или тонкой гофрированной металлической поверхности. Именно поэтому основоположник применения фанерной обшивки в авиастроении А. Фоккер на своих самолетах употреблял работающую обшивку только в конструкции крыла, фюзеляж же имел легкую полотняную обтяжку.

Первый шаг в развитии расчетов авиационной оболочечной конструкции был сделан во второй половине 20-х годов, когда научный сотрудник фирмы Рорбах Г. Вагнер создал «теорию диагональных напряжений». Согласно выводам Вагнера, подкрепленная по контуру металлическая пластина способна воспринимать возникающие в ней диагональные нагрузки даже после потери устойчивости и, следовательно, нет необходимости в применении очень частого подкрепляющего силового набора в виде нервюр и стрингеров [1]. В начале 30-х годов теория Вагнера получила дальнейшее развитие в работах немецкого ученого Т. фон Кармана, после войны работавшего в США. Карман вывел ряд формул для оценки предельных напряжений в полумонококовой конструкции, пригодных для инженерных расчетов. Правда, из-за ряда допущений в формулах расчеты приходилось проверять экспериментальным методом [2, с. 28–29].

Уточнению теоретических методов расчета свободнонесущего крыла с обшивкой, участвующей в восприятии нагрузок, способствовали исследования сотрудника НАКА П. Куна и нашего соотечественника В. Н. Беляева. Кун установил зависимость распределения напряжений в обшивке от внутренней силовой конструкции, а Беляев дал новый метод расчета свободнонесущего крыла и ввел понятие редукционного коэффициента, позволяющего привести все сечения крыла к материалу с единым модулем упругости [3, с. 75; 4, с. 300].

Новый взгляд на механизм восприятия нагрузок тонкостенной оболочкой способствовал распространению работающей обшивки в самолетостроении, т. к. выводы ученых свидетельствовали о том, что местная потеря устойчивости в обшивке не представляет опасности разрушения, и конструкция может быть легче, чем полагали прежде.

Пионером новых форм в самолетостроении стал американский конструктор Д. Нортроп. В 1927 г. он, работая на фирме Локхид, создал почтово-пассажирский самолет «Вега». Самолет имел свободнонесушее крыло и монококовый фюзеляж с фанерной обшивкой. Применение круглого фюзеляжа-монокока позволяло при тех же габаритных размерах примерно в полтора раза уменьшить площадь миделевого сечения по сравнению с распространенным тогда фюзеляжем с плоскими стенками, минимизировать величину «смачиваемой» поверхности и. в результате, уменьшить коэффициент лобового сопротивления самолета. «Вега» с успехом принимала участие во многих состязаниях, строилась в серии [5, с. 482].

В начале 30-х годов появились первые металлические самолеты с гладкой работающей обшивкой — Нортроп «Альфа», Локхид «Сириус» и др. В отличие от «Веги», они имели пол у монококовую конструкцию: тонкий металлический лист требовал больше стрингеров, нервюр и шпангоутов, чем более жесткая фанерная обшивка. Из-за отсутствия гофра аэродинамическое качество этих самолетов было намного выше, чем у пассажирских «Юнкерсов» и «Фордов» 20-х годов.

Таблица 2.1. Сравнительные характеристики некоторых пассажирских самолетов

Применение работающей обшивки позволило уменьшить относительную толщину свободнонесущего крыла. Воспринимающая изгибные напряжения обшивка дала возможность разгрузить лонжероны, а это означало, что при той же толщине полок строительная высота лонжерона, определявшая толщину крыла, могла быть уменьшена. В 30-е годы относительная толщина профиля монопланного крыла уменьшилась с 18–22 % до 14–15 %. Таким образом, внедрение работающей обшивки в авиастроении способствовало уменьшению как сопротивления трения, так и профильного сопротивления крыла.

* * *

Переход к более совершенным аэродинамическим формам самолетов обеспечил повышение их характеристик в полете, однако одновременно возникли трудности при заходе на посадку. С увеличением аэродинамического качества посадочная глиссада становилась все более пологой, а это создавало сложности при расчете точки касания аэродрома, затрудняло посадку в случае, если аэродром окружали горы, высокие деревья или здания. Таким образом выяснилось, что даже такая безусловно желательная величина как аэродинамическое качество имеет свои неблагоприятные стороны.

Поэтому на самолетах начали применять специальные поверхности на крыле для увеличения подъемной силы и лобового сопротивления при посадке. Аэродинамическое качество при отклоненных посадочных поверхностях снижалось, траектория посадки становилась более крутой, и приземлить самолет было проще.

Таблица 2.2. Влияние посадочной механизации на аэродинамические характеристики крыла [11,с. 148–149]

Самым ранним типом посадочной механизации является обычный (нещелевой) закрылок. Он появился как видоизменение элерона. При отклонении вниз закрылок повышает подъемную силу и сопротивление крыла за счет увеличения кривизны профиля. Первые опыты с такими устройствами проводились в Англии еще до первой мировой войны. В 1914–1916 гг. в России Ф. Ф. Терещенко вел работы по созданию самолета с изменяемой кривизной задней части профиля крыла [6. с. 121–122]. Эксперименты показали прирост подъемной силы при отклонении закрылка, однако в те годы необходимости в посадочной механизации еще не было, и эксперимент так и остался экспериментом.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*