KnigaRead.com/

Д. Соболев - История самолётов 1919 – 1945

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Д. Соболев, "История самолётов 1919 – 1945" бесплатно, без регистрации.
Перейти на страницу:

Воплощению всех этих замыслов препятствовала недостаточная энерговооруженность самолетов: для вертикального взлета требовалась удельная нагрузка на мощность 1.4–1.7 кг/л.с. [59, с. 10]. что примерно вдвое больше реально достижимых в рассматриваемый период величин.

После первой мировой войны возобновились работы по вертолетам. История этих летательных аппаратов выходит за рамки книги, поэтому скажу лишь, что к началу 30-х годов вертолет по-прежнему оставался экспериментальным аппаратом. Из-за неудовлетворительной устойчивости и управляемости, небольшой грузоподъемности и малого ресурса агрегатов силовой установки он был неприемлем для решения практических задач.

Некоторый успех был достигнут лишь на пути создания автожиров — летательных аппаратов, представляющих собой комбинацию самолета и вертолета. Автожир имеет крыло и фюзеляж, как у самолета и горизонтальный винт, как у вертолета, однако в полете винт не связан с двигателем и вращается под действием набегающего потока воздуха, создавая значительную дополнительную подъемную силу. Хотя автожир и требовал разбега и пробега при взлете и посадке. благодаря искусственной раскрутке горизонтального винта перед стартом дистанция разбега была намного короче, чем у самолета. Кроме того, при остановке мотора в полете авторотирующий несущий винт уменьшал скорость снижения, т. е. играл роль своеобразного парашюта. Это повышало безопасность при приземлении. Недостатками автожира по сравнению с самолетом был больший вес конструкции и большее аэродинамическое сопротивление в полете.

Первые успешные автожиры были построены в 1923–1924 гг. испанским авиаконструктором X. де ля Сьерва [60]. В связи с популярностью идеи безопасного „самолета для каждого“ автожир сразу же привлек к себе интерес. К 1933 г. в мире было построено уже более 130 аппаратов этого типа. Некоторые из автожиров производились серийно. В 1934 г. в Москве, в ЦАГИ был создан автожир А-7, на котором впервые в мире установили стрелковое вооружение. В 1941 г. пять автожиров этого типа даже принимали участие в боевых действиях, правда без большого успеха.

Автожир имел короткую жизнь. Конструкторы вертолетов, используя опыт строительства автожиров, в частности конструкцию втулки несущего винта, создали во второй половине 30-х годов экспериментальные образцы вертолетов, которые по своим летным возможностям превосходили автожиры. По сравнению с последним. вертолет мог неподвижно висеть в воздухе, был способен к взлету и посадке без разбега и пробе га. В годы второй мировой войны вертолет полностью вытеснил автожир.


Рис. 1 89. Автожир


Как уже отмечалось, в 20-е годы удалось достигнуть заметного прогресса и развитии авиационных двигателей внутреннего сгорания. За 10 послевоенных лег удельный вес авиамоторов снизился в среднем на одну треть, вдвое возросла мощность, повысилась надежность. Тем не менее, ученые и изобретатели вели поиск новых, более совершенных типов силовых установок для самолетов.

Одним из недостатков, присущих двигателю внутреннего сгорания, было падение мощности с увеличением высоты полета (рис. 1.90». Разряженная атмосфера не обеспечивала карбюратор тем количеством воздуха, которое необходимо для нормального горения смеси, двигатель как бы задыхался. Это делало невозможным полеты на больших высотах, заманчивых тем, что плотность воздуха, а следовательно и аэродинамическое сопротивление, там намного меньше, чем у земли.

Для повышения мощности двигателя на высоте были созданы специальные «переразмеренные» моторы. Конструкторы шли на преднамеренное завышение объема или степени сжатия двигателя. Так как при работе у земли на полной мощности двигатель быстро бы вышел из строя (обычно фирмы гарантировали возможность не более пятиминутной работы у земли при полном открытии дросселя [22, с. 163]), «полный газ» давался на высоте, при этом конструктивно предусмотренный запас мощности компенсировал потери из-за уменьшения плотности воздуха. Примером «переразмеренного» авиадвигателя 20-х годов является немецкий BMW-6 или его советским лицензионный аналог М-17, имеющий на номинальном (рассчитанном на продолжительную работу) режиме мощность 500 л.с., а на форсированном (взлетном) режиме — 680 л.с. Недостатком этого способа было увеличение веса двигателя по сравнению с обычным двигателем той же номинальной мощности. Так, удельный вес М-17 был 1,08 кг/л.с. — больше, чем у созданного почти на десять лет раньше обычного двигателя «Либерти» [9, с. 71].

Указанная проблема возродила интерес к весьма популярной в XIX веке идее самолета с ракетным двигателем. Как известно, в отличие от обычного мотора, тяга реактивного двигателя не зависит от высоты полета. Кроме того, отношение тяги к весу у ракетного двигателя намного больше, чем у винтомоторной силовой установки.


Рис. 1.90 Изменение мощности двигателя при увеличении высоты полета


Первые практические шаги в этой области были сделаны в Германии в конце 20-х годов. Группа энтузиастов реактивного полета — М. Вальс. Ф. фон Опель. Ф. Зандер и А. Липпиш решили установить пороховой ракетный двигатель на планере. Такой вид летательного аппарата получил впоследствии название «ракетоплан».

Так как ракетный двигатель нужно было разместить так. чтобы не нарушилась центровка аппарата, была выбрана схема «утка». В задней части фюзеляжа установили две пороховые ракеты конструкции Зандера, которые должны были, рабатывать последовательно, одна за другой. 11 июня 1928 г. летчик Ф. Штамер совершил 4 полета на ракетоплане, дальность третьего, самого удачного полета составила около полутора километров. Четвертое испытание едва не закончилось катастрофой. Через две секунды посте запуска двигателя произошел взрыв, и планер загорелся. За счет быстрого снижения Штамеру удалось сбить пламя и благополучно приземлиться. Однако в момент посадки провода электрического запала, изоляция которых сгорела, замкнулись, и воспламенился заряд второй пороховой ракеты. К счастью, пожар удалось быстро потушить и пилот не пострадал [61].

В 1929 г. испытания были продолжены. 30 сентября фон Опель на новом летательном аппарате, на этот раз с хвостовым оперением, установленном на балках за крылом, и снабженном целой батареей из 16 пороховых ракет, совершил 10-минутный полет, во время которого скорость достигала 160 км/ч (рис. 1.91). В конце 20-х — начале 30-х годов опыты по применению ракетных двигателей на планерах проводили также Рааб-Катценштейн, Хети и Эспенлауб в Германии. Катаньо в Италии, Сван в США. Постройкой ракетоплана занималась группа студентов-энтузиастов из Ленинградского политехнического института, но эта работа не была завершена [62, с. 32–33].

Опыты с пороховыми двигателями показали принципиальную возможность полета реактивного летательного аппарата. Однако они не могли дать практического результата. Из-за кратковременности работы порохового РДТТ время полетов, как правило, измерялось секундами. Эксперименты часто сопровождались взрывами и пожарами.

Большее практическое значение имели работы по применению пороховых ракетных двигателей в качестве стартовых ускорителей. Если для горизонтального полета самолета было достаточно иметь тяговооруженность порядка 1/10-1/12, то для излета отношение тяги винта к весу долж- но было составлять не менее 1 /4-1/5, Это затрудняло взлет тяжело нагруженных самолетов, особенно ест и старт происходил с мягкого грунта.


Рис. 1.91. Ракетоплан немецких конструкторов, 1929 г.


Опыты по использованию пороховых ракетных двигателей в качестве вспомогательной силовой установки для облегчения взлета самолета начались в Германии и в СССР в 1929–1930 гг. В Германии по инициативе И. Винклера летом 1929 г. ракетные ускорители были установлены на крыле металлического одномоторного самолета Юнкерс W-34. Самолет был снабжен поплавковым шасси и взлет с ускорителями происходил с воды [63]. В СССР работы по созданию авиационных пороховых стартовых ускорителей возглавил В. И. Дудаков. В 1931 г. было выполнено около 100 взлетов на учебном У-1 с ускорителями (рис. 1.92), затем в 1931–1934 гг. проводились опыты по использованию ракетных ускорителей для взлета тяжелых самолетов ТБ-1. Эксперименты показали, что благодаря дополнительной силовой установке длина разбега уменьшается более, чем в 4 раза [64, с. 64–66].

Подводя итоги опытов по применению твердотопливных ракетных двигателей в авиации, С. П. Королев в докладе на Всесоюзной конференции по изучению стратосферы в 1934 г. заявил: «…если можно говорить о применении пороховых ракетных двигателей к самолетам, то только в качестве вспомогательного средства и, в первую очередь, как мощного кратковременно действующего источника силы для взлета» [65 с. 417]. Будущее подтвердило правоту этих слов.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*