KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Техническая литература » Станислав Зигуненко - 100 великих достижений в мире техники

Станислав Зигуненко - 100 великих достижений в мире техники

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Станислав Зигуненко, "100 великих достижений в мире техники" бесплатно, без регистрации.
Перейти на страницу:

Столь же экзотична, по мнению Ирины Ярославовны, и гипотеза об образовании при столкновении встречных пучков миниатюрных черных дыр. Даже если они и образуются, то время жизни их будет столь ничтожно, что их будет чрезвычайно трудно просто обнаружить. Разве что по косвенным признакам, например рентгеновскому излучению Хокинга, да и то уже после того, как сама дыра исчезнет.

Словом, реакции, по некоторым расчетам, будут происходить в объеме всего лишь 10–20 куб. см и настолько быстро, что экспериментаторам придется немало поломать голову, чтобы поставить нужные датчики в соответствующих местах, получить данные и затем соответствующим образом их интерпретировать.

Продолжение следует… С той поры, когда профессором Арефьевой были сказаны вышеприведенные слова, до момента написания данных строк прошло почти пять лет. За это время состоялся не только первый пробный пуск БАКа и еще несколько последующих. Как вы теперь сами знаете, все остались живы, и ничего страшного не произошло. Работы продолжаются…

Ученые только жалуются, что им очень трудно следить за исправностью всего оборудования этой уникальной научной установки. Тем не менее они уже мечтают о строительстве гигантского ускорителя частиц следующего поколения – Международного линейного коллайдера (International Linear Collider, ILC). Во всяком случае, вот что пишут по этому поводу Барри Бэриш, заслуженный профессор Калифорнийского технологического института, который руководит работами по проектированию Международного линейного коллайдера, его коллеги – Николас Уокер Уокер, специалист в области физики ускорителей из Гамбурга, и Хитоши Ямамото, профессор физики в университете Тохоку в Японии.

«Конструкторы ILC уже определили основные параметры будущего коллайдера, – сообщают ученые. – Его длина – около 31 км; основную часть займут два сверхпроводящих линейных ускорителя, которые обеспечат электрон-позитронные столкновения с энергией 500 ГэВ.

Пять раз в секунду ILC будет генерировать, ускорять и сталкивать почти 3000 электронных и позитронных сгустков в импульсе длительностью 1 мс, что соответствует мощности 10 МВт для каждого пучка. КПД установки составит около 20 %, следовательно, полная мощность, которая понадобится ILC для ускорения частиц, составит почти 100 МВт».

Для создания пучка электронов мишень из арсенида галлия будет облучаться лазером; при этом в каждом импульсе из нее будут выбиваться миллиарды электронов. Эти электроны сразу будут ускорены до 5 ГэВ в коротком линейном сверхпроводящем ускорителе, а затем инжектированы в 6,7-километровое накопительное кольцо, расположенное в центре комплекса. Двигаясь в кольце, электроны будут генерировать синхротронное излучение, и сгустки сожмутся, что увеличит плотность заряда и интенсивность пучка.

На середине пути при энергии 150 Мэв электронные сгустки будут слегка отклонены и направлены в специальный магнит, так называемый ондулятор, где некоторая часть их энергии преобразуется в гамма-излучение. Гамма-фотоны попадут на мишень из титанового сплава, вращающуюся со скоростью около 1000 оборотов в минуту. При этом образуется множество электрон-позитронных пар. Позитроны будут захвачены, ускорены до 5 ГэВ, после чего попадут в другое сжимающее кольцо и, наконец, во второй главный линейный сверхпроводящий ускоритель на противоположном конце ЛС.

Когда энергия электронов и позитронов достигнет конечной величины в 250 ГэВ, они устремятся к точке столкновения. После столкновения продукты реакции будут направляться в ловушки, где и зафиксируются.

Несмотря на то что команда ILC уже выбрала общую конструкцию коллайдера, предстоит большая работа по ее детализации. Кроме того, есть еще и ряд нерешенных теоретических проблем. Так что когда БАК начнет выдавать данные по протон-протонным столкновениям, полученные результаты будут использованы и для оптимизации конструкции ILC.

Предполагается, что создание коллайдера нового поколения будет вестись сообща учеными всего мира. Но пока даже неизвестно, где будет расположен ILC – в Европе, США или в Японии.

Интересно, при осуществлении этого проекта кто-нибудь тоже обратится в суд?.. Но вспомните: даже средневековой инквизиции с ее кострами и пытками не удалось остановить течение научной мысли. А мы с вами все-таки живем в куда более просвещенное время…

Космические телескопы

Вести наблюдения за планетами, звездами, туманностями, галактиками прямо из космоса – о такой возможности астрономы мечтали давным-давно. Дело в том, что атмосфера Земли, защищающая человечество от многих космических неприятностей, одновременно и мешает вести наблюдения за отдаленными небесными объектами. Облачный покров, нестабильность самой атмосферы вносят искажения в получаемые изображения, а то и вообще делают астрономические наблюдения невозможными. Поэтому, как только на орбиту стали посылать специализированные спутники, астрономы стали настаивать на выводе в космос астрономических инструментов.

Первенец «Хаббл». Решающий прорыв в этом направлении произошел в апреле 1990 года, когда один из «шаттлов» вывел в космос телескоп «Хаббл» весом 11 т. Уникальный прибор длиной 13,1 м и диаметром главного зеркала 2,4 м, который обошелся налогоплательщикам США в 1,2 млрд долларов, был назван в честь знаменитого американского астронома Эдвина Хаббла, который первым заметил, что галактики разбегаются от некоего центра во все стороны.

Космический телескоп «Хаббл» и сделанный им снимок столпов творения – рождения новых звёзд в туманности Орел

Работа «Хаббла» началась с неприятностей. Через два месяца после того, как он был выведен на орбиту высотой 613 км, стало очевидно, что основное зеркало сделано с браком. Его кривизна у краев отличалась от расчетной на несколько микрон – пятидесятую часть толщины человеческого волоса. Тем не менее и этой малости оказалось достаточно, чтобы «Хаббл» оказался близорук, а получаемое им изображение расплывчато.

Поначалу недостатки изображения пытались исправить на Земле с помощью компьютерных корректирующих программ, но это помогало слабо. Тогда было решено провести уникальную операцию по исправлению «близорукости» прямо в космосе, прописав «Хабблу» специальные «очки» – корректирующую оптическую систему.

И вот ранним утром 2 декабря 1993 года семеро астронавтов отправились на «шаттле» «Индевор» проводить уникальную операцию. На Землю они вернулись через 11 суток, сделав во время пяти выходов в открытый космос, казалось бы, невозможное – телескоп «прозрел». Это стало очевидным после получения от него очередной порции снимков. Их качество существенно возросло.

За годы своего полета космическая обсерватория совершила несколько десятков тысяч оборотов вокруг Земли, «накрутив» при этом миллиарды километров.

Телескоп «Хаббл» позволил наблюдать уже более 10 тысяч небесных объектов. Два с половиной триллиона байтов информации, собранной телескопом, хранится на 375 оптических дисках. И она все еще продолжает накапливаться. Телескоп позволил открыть существование черных дыр в космосе, выявил наличие атмосферы у спутника Юпитера – Европы, открыл новые спутники Сатурна, позволил заглянуть в самые удаленные уголки космоса…

Во время второго «техосмотра» в феврале 1997 года на телескопе заменили спектрограф высокого разрешения, спектрограф слабых объектов, устройство наводки на звезды, магнитофон для записи информации и электронику солнечных батарей.

По плану «Хаббл» должен был «выйти на пенсию» в 2005 году. Однако он исправно работает и по сию пору. Тем не менее ему уже готовится почетная отставка. На смену ветерану в 2015 году должен заступить на космическую вахту новый уникальный космический телескоп, названный в честь Джеймса Уэбба – одного из директоров NASA. Это при нем астронавты впервые высадились на Луну.

Что день грядущий нам готовит? Поскольку новый телескоп будет иметь составное зеркало диаметром 6,6 м и общей площадью 25 кв. м, полагают, что «Уэбб» будет в 6 раз мощнее своего предшественника. Астрономы смогут наблюдать объекты, которые светятся в 10 млрд раз слабее, чем самые тусклые звезды, видимые невооруженным глазом. Они смогут увидеть звезды и галактики, которые были свидетелями младенчества Вселенной, а также определить химический состав атмосфер планет, вращающихся вокруг далеких звезд.

В создании новой орбитальной инфракрасной обсерватории принимают участие более 2000 специалистов из 14 стран. Работы над проектом начались еще в 1989 году, когда NASA предложило мировому научному сообществу проект «Космический телескоп следующего поколения» (Next Generation Space Telescope). Диаметр главного зеркала планировался не меньше 8 м, но в 2001 году амбиции пришлось умерить и остановиться на 6,6 м – зеркало больших размеров не влезает в ракету «Ариан-5», а «шаттлы», как известно, летать уже перестали.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*