KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Техническая литература » Стивен Котлер - Мир завтра. Как технологии изменят жизнь каждого из нас

Стивен Котлер - Мир завтра. Как технологии изменят жизнь каждого из нас

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Стивен Котлер, "Мир завтра. Как технологии изменят жизнь каждого из нас" бесплатно, без регистрации.
Перейти на страницу:

Публичное обсуждение воздействия электричества на зрение восходит к 1751 году, когда Бенджамин Франклин провел свой знаменитый эксперимент с воздушным змеем и ключами. В скором времени ученые заговорили о возможности лечения слепоты посредством электрической стимуляции мозга, но эта идея постепенно заглохла.

Удивляться тут, по-видимому, нечему. Зрение вообще занимает весьма необычное место в истории. На протяжении более чем столетия креационисты, боровшиеся с учением Дарвина, считали существование зрения доказательством существования Бога. Глаза – слишком сложная вещь для такого, казалось бы, случайного процесса, как естественный отбор. Вследствие этого исцеление слепоты оставалось вотчиной исключительно религиозных целителей. «Это всегда считалось религиозным чудом, – говорит Том Хоглунд из Фонда борьбы со слепотой, – но теперь это чудо научное».

Тринадцатого июня Добелл выступил на ежегодном собрании Американского общества по развитию искусственных внутренних органов в Нью-Йорке и рассказал изумленным слушателям о восьми прооперированных им пациентах, из которых Йенс стал первым, у кого был активизирован имплантант Затем он показал видеозапись, где Йенс водит машину. «Я сорвал бурю аплодисментов, – рассказал мне потом Добелл, – но сомневаюсь, что кто-нибудь из присутствовавших по-настоящему понял, свидетелями чего они были».

Для большинства специалистов, занимающихся проблемой искусственного зрения, прорыв Добелла стал полной неожиданностью. О Добелле если кто и знал, то лишь в связи с его ранними работами в области стимулирования фосфенов. Он держался подальше от академических кругов, что не добавляло ему авторитета в ученом сообществе.

В настоящее время существует не менее дюжины команд на четырех континентах, которые занимаются разработкой различных систем искусственного зрения, и Добелл возглавляет лишь одну из них. Одни трудятся над созданием ретинальных имплантантов, работающих на батарейках или на солнечной энергии, другие выращивают ганглиозные клетки на кремниевых чипах, третьи занимаются разработкой стимуляторов зрительного нерва. А в числе лидеров – пока не объявился Добелл – был Дик Норманн, бывший заведующий кафедрой биоинженерии в Университете Юты.

Как и Добелл, Норманн работает над созданием зрительного нейропротеза. Я стал первым, кто сказал ему, что гонка завершена и он проиграл.

– Это фантастика! – говорит Норманн.

– Вы не расстроились?

– Это фантастика, фантастика, фантастика! – повторяет он, а затем, после паузы, добавляет: – Если, конечно, это действительно работает.

– Что вы имеете в виду? Я был там. Я видел, что это работает.

– Но что вы называете «работает»? Если пациент видит движущееся пятно света, зрение ли это? Мне нужно знать, что именно он видит.

– Ладно, но как это повлияет на ваши исследования?

– Никак не повлияет. Мы будем продолжать делать то, что делали.

Норманн также имеет в виду трехчастную систему: имплантант, обработчик сигналов, камера, – но с очень важным отличием. В то время как имплантант Добелла располагается на поверхности зрительной коры мозга, имплантант Норманна проникает в глубину.

Норманновский имплантант имеет значительно меньшие размеры – со шляпку гвоздя – и «вбивается» в кору головного мозга в том самом месте, где воспринимается обычная зрительная информация. По словам Норманна, его изобретение настолько высокоточное, что каждый электрод способен стимулировать отдельные нейроны.

– Это важно потому, – поясняет он, – что краеугольным камнем искусственного зрения является взаимодействие между электрическим током и нейронами. Поскольку имплантант Добелла располагается на поверхности зрительной коры, он требует большой силы тока – где-то в пределах 1–10 миллиампер – и возбуждает сразу множество нейронов. Прицельность никакая, а потому очень многое может пойти не так.

Мне ли этого не знать? Пациент едва не умер у меня на руках.

– Углубление электродов внутрь коры позволяет снизить силу тока до 1–10 микроампер. Разница тысячекратная.

А снижение силы тока снижает вероятность приступов. Но это еще не все. Уменьшение силы тока позволяет также повысить точность, увеличить разрешение:

– Чем меньше сила тока, тем больше электродов можно упаковать в имплантант, – поясняет Норманн. – Мы еще не достигли цели, но с моими электродами есть шанс создать поле соприкасающихся фосфенов – точно так же, как у вас или у меня, – а с поверхностным имплантантом Добелла это неосуществимо.

Вот как бывает, когда вопросы, ранее являвшиеся вотчиной одних лишь мистиков, становятся полем деятельности инженеров. Как и другие высокие технологии, будь то операционные системы или веб-браузеры, искусственное зрение становится ареной войны стандартов.

Забудьте о религиозных целителях; теперь соперничество идет между системами Beta и VHS.

8

Чтобы разобраться в том, что же на самом деле видит Йенс, я отправляюсь в Лос-Анджелес, в Университет Южной Калифорнии, где находится лаборатория Марка Хумаюна. Как и конкуренты, Хумаюн использует видеокамеру, вмонтированную в очки, обработчики сигналов, генерирующие изображение, но, в отличие от нейропротезов Норманна и Добелла, его имплантант располагается поверх сетчатки глаза. Его задача – занять место поврежденных палочек и колбочек, чтобы дать импульс глазным клеткам, которые все еще здоровы, и использовать компоненты обработки информации, присущие самим глазам, – ганглиозные клетки и зрительный нерв, – чтобы посылать информацию в мозг.

«Это ограниченный подход, ориентированный на ограниченное число патологий, но у него есть свои преимущества, – говорит Хумаюн. – Мы считаем, что все-таки лучше оперировать слепой глаз, чем здоровый мозг».

Возглавляемая Хумаюном лаборатория ретинального протезирования Института глаза Доэни входит в структуру университета Южной Калифорнии. Небольшая комната битком набита электронным оборудованием. Техники в лабораторных халатах сидят, согнувшись за своими компьютерами, и практически не реагируют на мое появление.

Джеймс Вейланд, сотрудник института, помогает мне надеть мудреный головной убор со специальными очками, полностью перекрывающий доступ света. На лбу прикреплена миниатюрная камера; провода от нее тянутся по моей спине к ноутбуку, расположенному слева от меня. Камера поворачивается туда, куда поворачиваются мои глаза, и проецирует изображение на «экран» очков. Это производимое компанией Sony устройство, называемое Glasstron, превращает обычное зрение в его оцифрованную версию.

Пока питание выключено, я не вижу ровно ничего. Вейланд включает устройство и спрашивает, что я вижу.

– Смутные серые формы. Большие пятна с размытыми краями.

– Вы видите дверь? Можете ли вы подойти к ней?

– Да, могу – если вы хотите, чтобы наткнулся на что-нибудь и упал.

– Дисплей у вас пять на пять, – говорит Вейланд. – Подождите, сейчас я увеличу число пикселов до 32×32.

Вейланд полагает, что матрица 32×32, то есть 1024 пиксела, удовлетворит мои зрительные потребности. Вероятно, это раз в 10 лучше разрешения имплантанта Добелла и гораздо ближе к замыслу Норманна.

Я слышу, как Вейланд возится с компьютером. Внезапно в глазах проносится вспышка света, словно я вижу прыжок в гиперпространство сквозь водопад из фильма «Звездные войны».

– Теперь видите?

– Не совсем.

– Подождите минутку, дайте глазам привыкнуть.

– Ладно. У меня в глазах одни пузыри, размытые края, движение…

Внезапно картинка становится более четкой. То, что еще несколько мгновений назад выглядело атакой желеобразных тварей, стало дверью и человеческими лицами.

– Что случилось? – спрашиваю я. – Вы снова увеличили разрешение?

– Нет, – отвечает Вейланд, – это ваш мозговой компьютер учится видеть.

Очень странно наблюдать за тем, как твой собственный мозг реорганизуется, но именно это и происходит. Размытый край стола на глазах становится четкой линией, а потом становится узнаваемым и стоящий на нем компьютер.

Я снова смотрю вокруг. Вейланд пока невидим. Затем происходит легкое изменение в колорите картинки. Серая рябь расступается, и я вижу белую плоскость лба, оттеняемую чернотой волос.

Я перевожу взгляд: дверь, стол, компьютер, человек.

Так вот как выглядит чудо!

Часть вторая. Будущее снаружи

Восстановление «Эверглейдс»: первый опыт терраформирования

Научно-технический прогресс определенно трансформирует нашу внутреннюю среду: наши тела, нашу биологию, наш мозг, – но как насчет среды внешней? Какое воздействие мы оказываем на мир в целом?

В последнее время разговоров о таком воздействии велось немало. Экологические, природоохранные аспекты научно-технического прогресса явно отстают от других его аспектов. Таяние ледников, вымирание отдельных видов животных, загрязнение окружающей среды – список можно продолжать еще очень долго. Пытаясь бороться с этой тенденцией, ученые включили в свой лексикон такие громкие слова, как мегаинженерия и терраформирование, свидетельствующие об усилении позитивного влияния на окружающий мир. Теперь мы не просто латаем дыры в экосистемах; мы трансформируем их.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*