KnigaRead.com/

Иван Шунейко - Пилотируемые полеты на Луну

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Иван Шунейко, "Пилотируемые полеты на Луну" бесплатно, без регистрации.
Перейти на страницу:

Остаток топлива в баках в момент обнажения датчиков полной выработки компонентов топлива состоял из 18,55 кг горючего и 21,59 кг окислителя. Кроме того, дополнительный расход 10,02 кг окислителя вызван испарением и повышенным расходом его после выработки горючего. Рассчитанный секундный расход топлива составил 5,008 кг/сек по сравнению с ожидавшейся величиной 5,103 кг/сек.

Таблица 10

Сравнительные данные по измерениям давлений в двигательной установке взлетной ступени при наземных и летных испытаниях приведены в табл. 11.

Таблица 11

Удельный импульс двигательной установки взлетной ступени лунного корабля в целом, т. е. с учетом расхода топлива двигателями РСУ рассчитывается по отношению

Из РСУ лишь двигатели, создававшие тягу в направлении X, параллельном направлению тяги основного двигателя, участвовали в создании приращения скорости лунного корабля, остальные двигатели РСУ работали сбалансированными парами.

Удельный импульс основной двигательной установки взлетной ступени лунного корабля рассчитывался по уравнению

где f – доля топлива, идущего на РСУ, расходуемая «Х-двигателями», ДУ и РСУ – секундный расход топлива для основной двигательной установки и всех двигателей РСУ соответственно, Jуд.РС —удельный импульс РСУ.

Вычисленный таким образом удельный импульс двигательной установки взлетной ступени лунного корабля составил 309,2 сек (ожидавшаяся величина 308,8 сек). Тяга двигателя была вычислена по формуле

Предварительные расчеты дали величину тяги 1570 кг. Более низкая величина тяги в полете по сравнению с ожидавшейся величиной объясняется пониженным давлением на выходе из блока регуляторов системы наддува. Результаты летных испытаний двигательной установки взлетной ступени лунного корабля приведены в табл. 12.

Таблица 12

Apollo-11. Двигательная установка посадочной ступени

Двигательная установка включалась дважды в полете Apollo-11. Первый запуск, обеспечивший переход лунного корабля на траекторию снижения, производился над обратной стороной Луны. Второе включение (торможение при посадке) было произведено через 1 ч. Продолжительность работы двигательной установки составила при этом 756,6 сек.

Показания контрольно-измерительной аппаратуры. В основном датчики функционировали очень хорошо. Предельная разница в показаниях различных датчиков давления на выходе из блока регуляторов не превышала 0,18 ат. Во время торможения были зарегистрированы пульсации давления окислителя на входе в двигатель (размах колебаний до 4,71 ат). Пульсации давления в камере сгорания и давления горючего на входе в двигатель, а также изменения характеристик двигателя по результатам измерений не были обнаружены, что указывает на отсутствие в действительности пульсаций в линии окислителя. Такого рода пульсации наблюдались при наземных испытаниях, когда слабые колебания усиливались резонансом полости в узле установки датчика давления. Узел установки датчика состоит из тройника, один из штуцеров которого заглушен, а другой подсоединен к датчику. Условия резонанса изменяются в зависимости от количества гелия, попавшего в тройник и степени дросселирования двигателя.

Работа системы наддува при спуске протекала следующим образом. Система сверхкритического гелия работала на номинальном режиме (рис. 16.3). Графики давления окислителя на входе в двигатель и давления в камере сгорания приведены на pис 16.4, где видны также обсуждавшиеся выше пульсации. На рис. 16.5 показано снижение давления в топливных баках, обусловленное растворимостью гелия в компонентах топлива.

Риc. 16.3. Изменение давления в гелиевом баке двигательной установки взлетной ступени лунного корабля Apollo-11.

Работа системы контроля количества топлива на протяжении всего полета соответствовала расчетам. Ожидаемые величины и результаты телеметрии приведены на рис. 16.6. Эти данные показывают, что измеряемые в обоих баках количества окислителя расходятся к концу второго запуска. Датчик полной выработки компонентов топлива сработал на 685 сек после зажигания (за 71 сек до подачи команды на выключение двигателя и за 116 сек до расчетного момента полной выработки компонентов).

Рис. 16.4. Пульсации давления в камере ЖРД и давления окислителя на входе в ЖРД посадочной ступени лунного корабля Apollo-11

Рис. 16.5. Растворение гелия в горючем (а) и в окислителе (б) по расчетным и экспериментальным данным для двигательной установки посадочной ступени лунного корабля Apollo-11.

Рис. 16.6. Расход окислителя в двигательной установке посадочной ступени лунного корабля Apollo-11

После посадки лунного корабля на поверхность Луны для сброса давления из бачка с гелием и из топливных баков отработавшей двигательной установки посадочной ступени были открыты послепосадочные дренажные клапаны окислителя и горючего. Режим дренажа окислителя был номинальным. Дренаж горючего сопровождался неожиданным ростом давления горючего на входе в двигатель (рис. 16.7).

Дренаж гелиевого бачка одновременно с дренажем топливных баков привел к замораживанию горючего во внешнем теплообменнике. Наблюдавшийся неожиданно высокий рост давления горючего на входе в двигатель был вызван термическим расширением горючего в замкнутом объеме между замерзшим теплообменником и отсечными клапанами за счет теплоподвода от камеры сгорания. Для следующих полетов было решено не производить дренаж бачка со сверхкритическим гелием до взлета с Луны. Это достигается закрытием запорных гелиевых клапанов.

Рис. 16.7. Дренаж топливных баков двигательной установки посадочной ступени после посадки Apollo-11 на Луну.

Таблица 13

Таблица 14

В табл. 13 и 14 приводятся ожидаемые и летные характеристики двигательной установки посадочной ступени лунного корабля Appollo-11.

Двигательная установка взлетной ступени

Двигатель осуществил старт с посадочной ступени и вывел взлетную ступень на окололунную орбиту. Все давления и температуры были номинальными. ЖРД работал на полной тяге 237 сек. На рис. 16.8 показано давление гелия в баллонах системы наддува.

Рис. 16.8. Давление гелия в баллонах двигательной установки взлетной ступени лунного корабля Apollo-11

В табл. 15 и 16 даются расчетные и измеренные в полете характеристики двигательной установки взлетной ступени лунного корабля Apollo-11.

Таблица 15

Таблица 16

Литература

1. The Apollo spacecraft. Space World, 1969, № F-3 (ЭИ АиР, 1969, № 32)

2. Apollo lunar module. Spaceilight, 1969, 11, № 6, (ЭИ АиР, 1969, №38)

3. Mc Carthy J. F., Dodds J. I., Crowder R. S. Development of the Apollo launch escape system. J. Spacecraft and Rockets, 1968, 5, № 8, ЭИ АиР, 1969, № 1; РЖ, 1969, 3.41.156

4. Ryan R. S., Kiefling Z. A., Buchanan H. J., J.arvinen W. A. Simulation of Saturn V S-II stage propellant feeding dynamics. AIAA Paper № 70—626, ЭИ АиР, 1970, № 39; РЖ, 1970, 11.41.214

5. Тawil М. N., Caloger P. The use of multilayer insulation on the LM vehicle. AIAA Paper № 69—609, (ЭИ АиР, 1970, № 7)

6. Strickland Z. Lunar rover-ready for Moon drive. Aviat. Week and Space Technol., 1971, 94, № 21. ЭИ АиР, 1971, № 40; РЖ 1971, 11.41.257

7. Davisson J. С., Мс.Harris J. A. S-IVB restart chilldown experience. AIAA Paper № 70—672, (ЭИ АиР, 1970, № 42).

8. Sandford J. W., Магtin J. E., The Saturn V for the «70 s» SAE Preprints, 1969, № 715, (ЭИ АиР, 1970, № 21)

9. Renman R. E., Mendelsohn A. R. Lunar module thermal control and life support systems for Apollo applications. SAE Preprints, 1969, № 625, ЭИ АиР, 1970, № 21; РЖ, 1970, 6.41.93

10. Long L. L., Hammitt R. L. Meteoroid performaition effects on space cabin design. AIAA Paper № 69—365. РЖ, 1970, 2.41.217

11. Mc Allum W. E. Development of meteoroid protection for extravehicular activity space suits. AIAA Paper № 69—366, ЭИ АиР 1969 № 46; РЖ, 1970, 2.41.124

12. Hеlvеу W. М., Jagоw R. B., Smith J. М. Life support requirements for the second decade of manned space flight IAF Papers a., N B134, ЭИ АиР, 1969, № 22; РЖ, 1969, 6.41.111

13. Сour—Palais Burton G. Meleorolid protection by multiwall structures. AIAA Paper N 69—372 ЭИ АиР, 1969, № 46; РЖ, 1970. 1.41.146

14. Drenning С. К., Stechman R. С. Determination of tailoff impulse and tailoff repeatability for small rocket engines. AIAA Paper, № 70—674, ЭИ АиР, 1970, № 41; РЖ, 1970, 11.41.125

15. Мorea S. F., Adams W. R., Arnett C. D. America's Lunar roving vehicle. AIAA Paper № 71—847

16. Smith W. W., Nyberg D. G., Wilson W. W., Hood J. F. Development and design aspects of a 5—pound thrust RCS rocket engine module. AIAA Paper N 70-654, ЭИ АиР, 1970, № 45; РЖ 1970,

17. Africanо R. С., Logedon Т, S. Optimization Saturn V. AIAA Paper №69—451

18. Lee В. James. Apollo status reports. Saturn V launch vehicle. AIAA Paper N 69—1094

19. Мullen С. R., Bender R. L. Saturn V/S-IC stage model and flight test base thermal environment. AIAA Paper N 69—318

20. George М. Low. Apollo spacecraft. AIAA Paper N 69—1095

21. Hellmann R., Conovar М., Morrison E., Neilson J. Lunar module thermal—vacuum simulation utilizing confonnal heater thermal control. AIAA Paper N 69—312

22. Graves D. L., Glynn P. C. A technique for analyzing latching dynamics and loads induced during spacecraft docking. AIAA Paper N 70—21

23. Pragenau J. L. Stability analysis of Apollo-Saturn V propulsion and structure feedback loop. AIAA Paper N 69—877

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*