Сергей Семиков - Баллистическая теория Ритца и картина мироздания
Именно классическая трактовка позволяет решить одну из главных загадок интерференции и дифракции электронов. Если электроны пускать редко, дабы те следовали по одному, то интерференция на двух щелях и другие дифракционные картины, всё же, возникают, как показали опыты В. Фабриканта (изобретателя лазера, § 4.9). Но это значит, что каждый электрон проходит сразу через обе щели, интерферируя сам с собой, иначе б интерференция была невозможна. С другой стороны, можно зафиксировать, через какую именно щель прошёл каждый электрон, а также заметить то место люминесцентного экрана, куда электрон попал. Всё это не вяжется с волновым представлением электрона и тем, что он проходит сразу обе щели [15]. Учёных гнетёт это противоречие, и, потому, они либо избегают этой темы, либо выдумывают совсем уж мистические теории.
А на деле — всё просто. Раз причина дифракции не в электроне, а в вызванных им рентгеновских лучах, то ему и незачем проходить сразу обе щели. Электроны, поодиночке пролетающие через щели, вообще не влияют на дифракционную картину. Можно вообще заткнуть щели материалом, непроницаемым для электронов, но прозрачным для рождённого ими излучения, — дифракционная картина сохранится, хотя до приёмника не долетит ни один электрон. А точки, где детекторы фиксируют электроны, это не места попадания электронов, прошедших через щели, а участки, где энергия излучения достаточна для возбуждения атомов детектора, для засветки кристаллов люминофора или бромистого серебра. Всё точно так же, как в рассмотренном выше случае для обычного оптического излучения (Рис. 147).
Известен также опыт по дифракции электронов на атомах инертных газов. Такой опыт был выполнен Рамзауэром и Таунсендом [82]. Коротко суть его в следующем. Между источником И электронов и установленным напротив него приёмником П (Рис. 163) помещается рассеивающая среда — инертный газ. Выстреливаемый источником к приёмнику узкий пучок электронов известной энергии рассеивается атомами газа. Часть электронов из тех, что не рассеялись или рассеялись на малые углы, достигает приёмника, создавая электрический ток, измерение которого даёт процент долетевших частиц (этот процент и ток тем больше, чем меньше рассеяние).
Рис. 163. Электронный пучок от источника приходит к приёмнику ослабленным за счёт рассеяния электронов атомами газа.
Теоретически, с уменьшением скорости и энергии частиц, степень их рассеяния атомами, определяемая через эффективное сечение рассеяния σ, должна монотонно нарастать. Точно так же, быстро мчащийся автомобиль или снаряд, влетающий в полосу препятствий, отклоняется от прямого пути, «рассеивается» тем раньше и сильнее, чем меньше его начальная скорость.
Но в опыте такая картина, — рост рассеяния с падением скорости, — наблюдается только до определённого значения E1 энергии электронов (Рис. 164). С достижением его, дальнейшее снижение скорости приводит уже не к росту, а к спаду рассеяния. Лишь после того, как энергия электронов понизится до следующего характерного значения E0, степень рассеяния снова начнёт расти. Если Резерфорд, в своём известном опыте, сравнивал α-частицы, отбрасываемые назад тонкой золотой фольгой, с винтовочными пулями, отскакивающими от листа бумаги, то медленные электроны, пробивающие слой газа в опыте Рамзауэра, следует, напротив, уподобить лёгким соломинкам, прошивающим толстый лист брони. Действительно, классическая теория долгое время не могла объяснить аномально высокой проницаемости газов — для сравнительно медленных электронов.
Рис. 164. Зависимость сечения рассеяния электронов от их энергии в опыте Рамзауэра.
Но, достаточно было предположить у электрона волновые свойства, как всё становилось на свои места. По квантомеханическим представлениям, рассматривать рассеяние электрона, как частицы, можно лишь до тех пор, пока его импульс выше некоторого значения, пока дебройлевская длина волны электрона мала, — много меньше размеров рассеивающего атома. (Точно так же геометрическая оптика, по сути рассматривающая свет, как поток прямолинейно летящих частиц, — фотонов, применима лишь для оптических систем, значительно превосходящих размерами длины световых волн.) Но, при некоторой, достаточно малой, скорости дебройлевская длина волны электрона (λ=h/p, где h — постоянная Планка, а p — импульс электрона) сравнивается с размерами рассеивающих электроны атомов.
В таком случае, согласно квантовой теории, электроны рассеиваются атомами уже не как частицы, но как волны: происходит дифракция электронных волн на атомах. При дифракции же, как следует из оптических опытов, волны огибают экран, создавая при сложении интерференционные максимумы позади него, в области геометрической тени. Так, например, при освещении круглого экрана в центре его тени, при определённых условиях, появляется светлое пятно (пятно Пуассона). Примерно то же происходит с электронами. При достаточно малой скорости они начинают как бы проходить сквозь атомы, огибать их, что проявляется в уменьшении рассеяния и создании на приёмнике своеобразного электронного пятна Пуассона. (Так же и автомобиль, медленно въезжающий в полосу препятствий, уже не будет в них врезаться, а станет их объезжать, и, потому, несмотря на малую скорость, сможет длительное время двигаться в правильном направлении).
Так и получилось, что рассеяние электронов, при убывании их скорости, растёт только до определённого значения их импульса, энергии. Едва скорость электронов уменьшится настолько, что длина их волны станет сопоставима с размерами атомов, рассеяние резко снизится. Этим и объясняется необычный характер графика (Рис. 164), имеющего аномальный провал, — минимум в области низких значений энергии электронов.
Замечательно, что, чем тяжелее используемый инертный газ, тем при меньших скоростях электронов удаётся наблюдать эффект аномального снижения рассеяния. Так, в "Общем курсе физики" [134] для сравнительно лёгкого аргона приводится критическое значение энергии E1= 13 эВ, для более тяжёлого криптона E1 = 11 эВ, а для тяжёлого ксенона E1 = 6 эВ. Снижение E1 объясняют тем, что размер атомов инертных газов постепенно растёт с увеличением их атомного номера, при переходе от He к Xe (Таблица 11: радиусы по статье «Инертные газы» из БСЭ). Поэтому, чем тяжелее газ, тем больше его атомы, и тем больше должна быть дебройлевская длина волны λ электрона, для дифрагирования на них. Тем сильнее нужно снизить скорость электронов для появления аномально низкого рассеяния. Выходит, по зависимости рассеяния электронов атомами можно даже оценивать значения атомных радиусов.
Такова квантомеханическая трактовка опыта Рамзауэра-Таунсенда, казалось бы, предельно ясная и убедительная. Но, на самом деле, — не всё так гладко.
Дело в том, что рассмотренный закон усиления рассеяния с падением скорости обоснован лишь для случая упругого рассеяния, то есть, — для рассеяния, при котором сумма кинетических энергий электрона и рассеивающего атома до и после соударения — одинакова: энергия удара не переходит во внутреннюю энергию атома. Поэтому, в учебниках специально оговаривается, что рассматривается только случай упругого соударения [82]. Но, в том-то и дело, что при энергиях порядка 10 эВ соударение уже близко к неупругому (§ 4.8).
Действительно, для каждого из газов энергия E1, начиная с которой возникает расхождение с классическим законом рассеяния, — лишь немногим меньше соответствующих энергий ионизации (Таблица 11). А, по другим данным, для аргона эти энергии и вовсе совпадают. Так, например, по учебнику А.Н. Матвеева [82] для аргона энергия наибольшего рассеяния составляет 16 эВ, что почти совпадает с энергией ионизации его атомов (15,7 эВ). Но тогда соударение становится уже неупругим: при такой энергии отдельные электроны, столкнувшись с атомом, уже не отскочат от него упруго, а потеряют скорость, отдав часть энергии на ионизацию атома, — на отрыв от него электрона.
Впрочем, столкновение становится неупругим ещё задолго до того, как энергия удара превысит энергию ионизации. Заметно меньше последней — энергия возбуждения атома (Таблица 11), — минимальная порция энергии, которую атом может поглотить. Только такая, но, — никак не меньшая, порция энергии способна перевести атом в возбуждённое состояние. Лишь электроны энергии E1, колеблющиеся при захвате атомом с частотой f=E1/h, способны войти в резонанс с собственной частотой колебаний внутренних электронов атома и, потому, легко отдают атому эту энергию E1, которая излучается в виде так называемой "первой резонансной спектральной линии атома". Существование такого порогового значения энергии было открыто в опыте Франка-Герца (§ 4.8), не менее простом и убедительном, чем опыт Рамзауэра-Таунсенда. Да и во многом другом эти опыты похожи.