В. Жуков - Химия в бою
К достоинствам относят и то, что при использовании безгильзовых патронов отсутствуют стреляные гильзы. В оружии отпадает, таким образом, необходимость в механизмах выбрасывания и отражения гильз, можно облегчить затвор и ствольную коробку и повысить за счет этого скорострельность. Не нужны устройства для сбора гильз в бронированных машинах и летательных аппаратах.
Вместе с тем отмечают и проблемы, которые предстоит разрешить прежде, чем новые боеприпасы обретут равные права с обычными. Так, во время продолжительной стрельбы не исключена еще возможность преждевременного выстрела из-за чрезмерного нагрева патронника. Нужны специальные устройства для извлечения патрона при осечке. Оставляет желать лучшего и обтюрация пороховых газов, предотвращение их прорыва назад через затвор. Существенные трудности, отмечает печать, представляет пока производство безгильзовых патронов с использованием высокопроизводительного оборудования, их хранение и транспортировка.
Пытаясь решить подобные проблемы, американская фирма «Смит и Вессон» разработала 9-мм безгильзовый патрон длиной 25 миллиметров и весом 8,4 грамма и приспособила его для стрельбы из пистолетов-пулеметов «Карл Густав» и М76. Модификация обоих образцов свелась в основном к переделке затвора: убрали ударник и выбрасыватель, а на переднем срезе установили два электрода. Пистолеты-пулеметы имеют трехпозиционный предохранитель-установщик вида огня (одиночный или автоматический) и выключатель цепи воспламенения. Питается пистолет-пулемет из коробчатого магазина емкостью 36 патронов. Воспламеняется пороховой заряд при выстреле от 30-вольтовой сухой электрической батареи, расположенной впереди спусковой скобы (рис. 9).
Рис. 9. Пистолет-пулемет, модифицированный для стрельбы безгильзовыми патронами: 1 — коробка для электрической батареи; 2 — установщик вида огня — предохранитель; 3 — выключатель цепи воспламененияОпытные стрельбы показали, что по баллистическим характеристикам и кучности боя 9-мм безгильзовые патроны почти идентичны таким же стандартным патронам НАТО с латунной гильзой. Например, при стрельбе из пистолета-пулемета М76 (темп огня 640 выстрелов в минуту) начальная скорость пули безгильзовых патронов была равна 335–365 м/сек, а при использовании стандартных патронов — 340 м/сек. Проблему выбрасывания патрона после осечки фирма пытается решить, применяя либо закраины, отпрессованные на пороховом заряде, либо выступы на оболочке пули, либо, наконец, используя принцип всасывания. Для увеличения долговечности безгильзовых патронов и безопасности обращения с ними химики фирмы разрабатывают новое водонепроницаемое и огнестойкое покрытие для порохового заряда.
После отработки оружия под 9-мм патрон фирма «Смит и Вессон» предполагает использовать этот опыт при создании винтовки под 5,56-мм безгильзовый патрон. Правда, винтовка такого калибра, как сообщалось, уже создана фирмой «Дейзи Мэньюфекчюринг». Но в ней применяются безгильзовые патроны марки VL (инициалы бельгийского химика В. Лангенховена, разработавшего этот патрон). Они отличаются от патронов фирмы «Смит и Вессон» тем, что не имеют электрического капсюля-воспламенителя. В патронах VL пороховой заряд воспламеняется струей сжатого воздуха, нагреваемого при сжатии до 1090 градусов.
Оценивая подобные разработки, иностранные специалисты указывают, что благодаря успехам современной науки, и прежде всего химии, уже в ближайшие годы новому виду патронов может быть открыта широкая дорога. А это, полагают, окажет значительное влияние на тактико-технические свойства стрелкового оружия будущего, технологию производства боеприпасов и материально-техническое обеспечение войск.
Немалое будущее сулят на страницах зарубежной печати и исследованиям, направленным на повышение бронепробиваемости боеприпасов малого калибра.
В 1967 году в журнале «Авиэйшн уик» появилось сообщение о том, что в США разрабатываются новые виды пуль — урановые. Падкие на сенсацию издания окрестили их даже «магическими». Пули эти демонстрировала военным специалистам фирма «Томпсон-Рамо-Вулридж», после чего министерство обороны США выдало ей контракт на проведение дальнейших исследований.
Что же такое урановые пули? Как известно, уран — один из самых тяжелых природных элементов. Его удельный вес равен 19,05 г/см3, тогда как у стали и свинца он составляет соответственно 7,8 и 11,35 г/см3. Отсюда и вытекает возможность создавать небольшие по объему дули, масса которых соответствовала бы массе боеприпасов более крупных калибров. Но дело не только в большом удельном весе урана, важны, отмечают специалисты, и его химические свойства.
Для изготовления урановых пуль использовался обедненный, то есть очищенный от способных к делению радиоактивных изотопов, уран. В связи с тем что твердый уран воспламеняется уже при температуре 150–200 градусов, пули снабдили жаростойким покрытием, защищающим от воздействия высокой температуры, возникающей при полете из-за трения о воздух.
При встрече с броней урановая пуля проникает в нее и теряет при этом жаростойкое покрытие. В зоне контакта урана с броней мгновенно развивается высокая температура, обусловленная как эффектом удара пули о преграду, так и теплом, которое образуется при вступлении урана в экзотермическую, то есть идущую с выделением тепла, химическую реакцию со сталью брони. Тепла в результате реакции выделяется столько, что пуля, как сообщалось, на своем пути расплавляет металл брони и образует в ней отверстие, во много раз превосходящее диаметр пули. К тому же, пробив броню, нагретый до очень высокой температуры уран пули вступает с воздухом заброневого пространства в реакцию окисления, протекающую со взрывом, ударная волна которого способна поразить экипаж и вывести из строя бронированную машину.
В печати отмечалось, что стреловидные урановые пули длиной 102 и диаметром 2,54 миллиметра при испытаниях пробивали броню толщиной до 50 миллиметров. Для стрельбы были разработаны 7,62-мм восьмиствольный скорострельный пулемет и автоматическая 35-мм пушка. «Снаряд» пушки представлял собой пучок урановых пуль, установленных в одном пластмассовом поддоне, отделяющемся после выстрела. Подчеркивалось, что при высокой начальной скорости урановые пули обладают кинетической энергией, обеспечивающей хорошую бронепробиваемость даже при больших углах встречи с броней. Так, при опытных стрельбах из 35-мм пушки пробивалась броневая плита толщиной 32 миллиметра, установленная — под углом 60 градусов от вертикали.
Посмотрим теперь, как влияют достижения химии на развитие артиллерийских боеприпасов. Судя по сообщениям зарубежной — печати, это влияние идет не по одному — по нескольким путям.
На протяжении десятков лет инженеры-артиллеристы трудились над тем, чтобы повысить начальную скорость снарядов. Чем больше эта скорость, тем при прочих равных условиях дальше летит снаряд и тем выше его бронепробиваемость. В зарубежной печати указывалось, что с 1940 по 1960 год начальная скорость бронебойных снарядов увеличилась с 600 до 1000 м/сек. Но требовалось дальнейшее увеличение скорости, и в этом помогла… химия.
Дело в том, что при начальной скорости снаряда свыше 1000 метров в секунду его классические ведущие пояски из меди или отожженного железа быстро изнашивают ствол орудия. Применение же нейлоновых и фторопластовых (тефлоновых) ведущих поясков позволило не только резко увеличить скорость снарядов, но и намного продлить срок службы стволов. Начальная скорость подкалиберных снарядов для зарубежных танковых пушек уже находится в пределах 1400–1500 м/сек.
Химия указала и другой путь повышения живучести стволов — добавление к пороховому заряду специальных присадок — флегматизаторов. В частности, весьма перспективными присадками иностранные специалисты считают смесь углеводородов (парафин, воск) с тонко измельченным порошком сернокислого или углекислого кальция. Этой смесью пропитывается шелковая, хлопчатобумажная или синтетическая ткань, которой затем обертывают не менее половины передней части порохового заряда. При выстреле смесь испаряется, и температура пороховых газов, омывающих внутренние стенки ствола, понижается, уменьшая тем самым разгар, разрушение ствола.
Об эффективности действия подобных присадок судят, в частности, по результатам опытных сравнительных стрельб из 105-мм орудия. Оказалось, что в зависимости от вида присадок и соотношения их компонентов канал ствола изнашивается меньше в шесть, восемь и даже в 20 раз. Считают, что такие сравнительно дешевые присадки целесообразно применять в стрелково-артиллерийских боеприпасах любого калибра.
Успехи химической науки позволяют создавать и новые виды боеприпасов. Как известно, во время второй мировой войны появился новый тип снаряда для поражения брони — кумулятивный, то есть концентрирующий энергию взрыва в одном направлении. Долгое время усилия специалистов, совершенствующих кумулятивный заряд, были направлены в основном на получение максимальной бронепробиваемости при относительно малом весе боеприпаса. Их не смущало, что во многих случаях диаметр пробоин в броне был небольшим, с диаметр карандаша. Но при такой пробоине степень поражения экипажа и механизмов боевой машины была незначительной. Впоследствии взгляды на бронепробиваемость изменились. В зарубежной литературе стали подчеркивать, что толщина брони, которую может пробить боеприпас, мало говорит о его достоинствах. Необходимо оценивать все факторы, обусловливающие эффективность стрельбы, и особенно поражающий эффект за броней.