KnigaRead.com/

Глеб Анфилов - Что такое полупроводник

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Глеб Анфилов, "Что такое полупроводник" бесплатно, без регистрации.
Глеб Анфилов - Что такое полупроводник
Название:
Что такое полупроводник
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
14 февраль 2019
Количество просмотров:
99
Возрастные ограничения:
Обратите внимание! Книга может включать контент, предназначенный только для лиц старше 18 лет.
Читать онлайн

Обзор книги Глеб Анфилов - Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.
Назад 1 2 3 4 5 ... 21 Вперед
Перейти на страницу:

Глеб Анфилов

Что такое полупроводник

ШКОЛЬНАЯ БИБЛИОТЕКА

Государственное Издательство Детской Литературы

Министерства Просвещения РСФСР

Москва 1957

{1}


Рисунки Б. Кыштымова

{2}


«Широко развернуть научно-исследовательские работы по полупроводниковым приборам и расширить их практическое применение».

(Из Директив XX съезда КПСС по шестому пятилетнему плану развития народного хозяйства СССР на 1956—1960 годы)

{3}


Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.

Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.

Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.

Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!

В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.

Жилища будут отапливаться... морозом.

В городах и поселках зажгутся вечные светильники.

Из воздуха и воды человек научится делать топливо пластмассы, сахар...

Создать все это помогут новые для нашей техники вещества — полупроводники.

О них эта книжка.

{4}

ВМЕСТО ВВЕДЕНИЯ

Вы сели за стол, включили свет, раскрыли книгу. Оторвитесь на минуту от чтения и оглядитесь вокруг.

В электрической лампочке сияет тоненькая спиралька из металла вольфрама. К ней идут медные провода — передатчики энергии. Медь и вольфрам отлично пропускают электрический ток. Этим свойством обладают и другие металлы. Поэтому они именуются проводниками.

А вот стеклянная колба лампочки, фарфоровые ролики на стене, резиновая трубка, охватывающая провод, ток почти совсем не пропускают. Их называют изоляторами.

Проводники и изоляторы — главные материалы электротехники. Но, кроме них, в природе есть как бы промежуточные вещества.

Возьмем к примеру графит — сердцевину карандаша. Ток он пропускает, но гораздо хуже металлов. Многие кристаллы, сплавы, всевозможные соли, окислы похожи в этом отношении на графит. Они-то и получили название полупроводников.  {5} 

Окружающий нас мир богат подобными веществами. Их можно извлекать из простого песка, сажи, камня. Пожалуй, можно сказать, что мы каждый день едим полупроводники за завтраком, обедом и ужином, топчем их своими ногами. Ведь самый распространенный в земной коре элемент кремний и основа жизни углерод образуют полупроводниковые кристаллы.

С давних времен человек старался освоить все, чем одарила его природа. Сырье, содержащее полупроводники, он применял в металлургии, в химии, в строительном деле — всюду, кроме электротехники.

Здесь полупроводники считались непригодными. Думали так: от проводников они ушли, а к изоляторам не пришли. Ими не заменишь ни медного провода, ни фарфорового ролика. Казалось, никакой пользы из их половинчатых свойств не извлечешь.

И на протяжении многих десятилетий никто не желал разобраться поглубже в электрических особенностях полупроводников.

Но время показало, что такое пренебрежение было большой ошибкой. В наши дни исследователи постигли огромное практическое значение этих веществ. Множество ученых занято теперь теорией и техникой полупроводников.

В чем же их ценность?

Не будем спешить с ответом. Прежде разберемся в более простых вещах.

{6}

СЕКРЕТЫ ЭЛЕКТРОПРОВОДНОСТИ

{7}

АТОМЫ

Земля и воздух, скалы и море, цветок и тончайшая жилка нашего тела — все построено из неисчислимых мириадов атомов. Каждый из них невообразимо мал. Возле булавочной головки атом словно булавочная головка рядом с Эльбрусом. А построен атом из частичек, еще в сотни тысяч раз меньших, чем он сам.

В центре его массивное ядро — кладовая атомной энергии, до которой сейчас дотянулась рука человека. Ядро несет положительный электрический заряд. Вокруг ядра движутся легкие, отрицательно заряженные электроны. Они удерживаются возле ядра, послушные всеобщему физическому закону: тела, которые имеют разноименные электрические заряды, притягиваются друг к другу.

Разнообразны ли атомы?

Не слишком. Вместе с созданными в последние годы искусственным путем науке известно сто видов атомов. Вот и все, если не считать разных сортов каждого вида. И из этого ассортимента частиц построено бесконечное многообразие тел и веществ Вселенной.  {9} 

Отличаются атомы разных видов неодинаковым зарядом ядер.

У ядра простейшего водородного атома самый маленький заряд. И электрон в таком атоме один-единственный. Ядра атомов меди гораздо богаче зарядом — в двадцать девять раз. Стало быть, и электронов там по двадцать девять у каждого атома.

Располагаются электроны атома в строгом порядке. Они движутся по замкнутым путям-орбитам, которые образуют несколько оболочек, охватывающих ядро.

Чем ближе электронная оболочка к ядру, тем крепче связаны с ним ее электроны. Чтобы выбить электрон с внутренней оболочки, нужен сильный толчок — большая энергия. Легче оторвать электроны, «обитающие» на последующих оболочках.

Электроны самой верхней, внешней, оболочки играют важнейшую роль. Они связывают атомы в кристаллическую структуру, соединяют их в молекулы. Химические процессы, электрическое состояние тел и многое другое определяются поведением электронов внешних атомных оболочек.

Как же ведут себя внешние электроны в различных веществах?

ЭЛЕКТРОНЫ В МЕТАЛЛЕ И ИЗОЛЯТОРЕ

Внешние электроны не удерживаются в атомах медной проволочки: слишком слабо они связаны с ядрами «своих» атомов. Атомы все время беспорядочно перемещаются и как бы стряхивают с себя внешние электроны. Эти «оторвавшиеся» электроны блуждают по кусочку металла, участвуя в общем беспорядочном тепловом движении, которое тем активнее, чем выше температура проволочки.

В мире электронов незаметно тяготение Земли. Объясняется это просто: слишком легки такие частицы и слишком  {10}  быстро они движутся. Зато электроны послушны другой силе — электрической. Как камень падает вниз, притягиваемый Землей, так электроны, наделенные довольно значительным для такой легкой частички зарядом, меняют движение под действием электрического поля, которое создается в пространстве любым заряженным телом.

Прижмем концы проволочки к полюсам электрической батарейки — металл тотчас пронизывается электрическим полем. Свободные электроны теперь не только участвуют в тепловом беспорядочном движении, но и перемещаются по проволочке к положительному полюсу батарейки, подхваченные полем. На место, освобожденное ушедшими электронами, поле выталкивает другие из отрицательного полюса батарейки. Они тоже уходят, уступая место новым и новым отрядам электронов: по проволочке побежал электрический ток.

Поток электронов в металле неспокойный. Ведь на их пути то и дело попадаются атомы, которые к тому же сами перемещаются, участвуя в тепловом движении. Поэтому при нагревании проволочки электронному потоку труднее становится пробиваться вперед. По мере повышения температуры сила тока уменьшается. В этом свойстве — важный признак электропроводности металла.



В металле многие электроны не связаны с каждым атомом в отдельности и беспорядочно блуждают между ними.

{11}



Кусочек металла соединен с полюсами электрической батарейки. Его пронизывает электрическое поле, которое подхватывает электроны и устремляет их к положительному полюсу.



В изоляторе внешние электроны прочно удерживаются у своих атомов. Поэтому здесь нечему переносить электрический ток.

Назад 1 2 3 4 5 ... 21 Вперед
Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*