KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Радиотехника » Жан-Поль Эймишен - Электроника?.. Нет ничего проще!

Жан-Поль Эймишен - Электроника?.. Нет ничего проще!

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Жан-Поль Эймишен, "Электроника?.. Нет ничего проще!" бесплатно, без регистрации.
Перейти на страницу:

Н. — Очень ловко! Но по сути дела твой магнетрон не что иное, как. диод с двумя анодами.


Многоанодный магнетрон

Л. — Совершенно верно. Но обычно магнетроны делают не с двумя, а с большим количеством анодов, например с восемью или десятью. Их можно расположить по схеме, приведенной на рис. 156.



Рис. 156. Многорезонаторный магнетрон с восемью анодами, соединенными колебательными контурами.


Колебания создаются точно так, как показано на рис. 155; разница заключается лишь в том, что в этом случае делают восемь одновременно работающих связанных колебательных контуров. В какой-то определенный момент четные аноды положительны относительно нечетных, а в следующий полупериод — наоборот.

Н. — Я понимаю принцип работы, но, на мой взгляд, сделать такую восьмианодную систему с восемью колебательными контурами дьявольски сложно!

Л. — Намного проще, чем ты думаешь, Незнайкин. Все эти колебательные контуры и аноды сделаны из одного куска меди, которому придана форма, показанная на рис. 157. Весь этот медный блок соединяется с положительным полюсом источника высокого напряжения. Как ты видишь, чтобы пройти от одного анода к другому, ток должен обогнуть полости, что дает нам эквивалент одновитковой катушки.




Рис. 157. Реальная конструкция восьмикамерного магнетрона; колебательными контурами являются объемные резонаторы, полученные фрезерованием анодного блока. В одном из объемных резонаторов находится петля — виток связи, предназначенный для вывода энергии.


Н. — С катушкой все ясно, но я совсем не вижу конденсатора.

Л. — Но в этом повинны твои глаза; между двумя поверхностями щели, соединяющей околокатодное пространство с одной из полостей, имеется некоторая емкость.

Н. — Ты прав. Принимая во внимание очень малую индуктивность и очень малую емкость, я полагаю, что система должна создавать колебания очень высокой частоты.

Л. — Такие магнетроны легко позволяют получить колебания с частотой выше 30 000 Мгц, иначе говоря, выше 30 миллиардов периодов в секунду. Такая частота соответствует длине волны меньше одного сантиметра. Но в современных радиолокаторах магнетроны чаще используют для получения колебаний с частотой 3 Ггц (т. е. 3000 Мгц), что соответствует длине волны 10 см или же 10 Ггц (длина волны 3 см). Обычно в радиолокаторах питание от источника довольно высокого напряжения подается на магнетроны на очень короткое время (одна микросекунда или еще меньше), что позволяет получить очень высокую мгновенную мощность.

Н. — А как выводят эту мощность из магнетрона?

Л. — Очень просто. В одну из полостей помещают петлю связи, которая служит вторичной обмоткой трансформатора, к ней подключают коаксиальный кабель, через который и отводят энергию.


Коаксиальный кабель с медной «изоляцией»

Н. — Ты упомянул о коаксиальном кабеле, а у меня как раз заготовлен один вопрос на эту тему. У меня сложилось впечатление, что в радиолокаторах не очень часто применяют этот кабель. Чем это объяснить?

Л. — Дело в том, что в радиолокаторах нужно передавать на высоких частотах большую мощность с минимальными потерями. В коаксиальном кабеле сложность возникает из-за необходимости крепления внутреннего проводника строго в середине внешнего. Использование для этой цели какого-либо изоляционного материала вызывает значительные потери энергии.

Н. — Какой же тогда изоляционный материал лучше всего поставить в коаксиальный кабель?

Л. — В этом случае я рекомендую тебе воспользоваться медью.

Н. — Ты что, смеешься надо мною? Я хотел бы знать, кого из нас двоих здорово стукнули коаксиальным кабелем по голове!



Л. — Я прекрасно понимаю твое удивление. Но не забывай, что здесь нам приходится иметь дело с очень высокими частотами. В коаксиальном кабеле можно сделать для внутреннего проводника медную опору, длина которой равна четверти длины волны колебания, передаваемого по кабелю (см. схематическое изображение на рис. 158).



Рис. 158. Четвертьволновая опора для внутреннего проводника коаксиального кабеля.


Конец этого четвертьволнового стержня замыкается накоротко с внешним проводником, и поэтому отраженная им волна возвращается в исходную точку в фазе с проходящей там прямой волной. Все происходит так, как если бы этот стержень-опора был разрезан в месте своего соединения с внутренним проводником.

Н. — Очень интересное решение. Я полагаю, что таким образом можно решить все проблемы передачи колебаний сверхвысокой частоты.

Л. — Увы, далеко не так! Описанную систему можно успешно применять только для передачи колебаний строго определенной частоты. А в радиолокаторах часто бывает полезно изменять частоту. Коаксиальный же кабель даже с четвертьволновыми опорами-изоляторами далек от совершенства, и поэтому предпочтение отдают трубе обычно прямоугольного сечения, по которой волна проходит в результате многократных непрерывных отражений от стенок. Такое устройство называют волноводом.



Многорезонаторный клистрон

Н. — А теперь я хотел бы спросить тебя, что такое клистрон и как он работает.

Л. — Давай для начала рассмотрим усилительный клистрон с двумя резонаторами. Для этого тебе предварительно нужно познакомиться с объемным резонатором типа румбатрон (так называются резонаторы клистрона). Посмотри на рис. 159 и ты легко поймешь, как он устроен, ты видишь две параллельно расположенные круглые пластины, образующие конденсатор. Пластины соединены между собой множеством проволочных петель, которые образуют параллельно соединенные катушки.



Рис. 159. Две круглые пластинки, соединенные некоторым количеством петель, образуют объемный резонатор.


Бесконечно увеличивая число проволочных петель, мы получим объемный резонатор, сечение которого я изобразил для тебя на рис. 160. По внешнему виду он напоминает покрышку автомобильной шины, между бортами которой натянули круглые куски ткани.



Рис. 160. Разрез румбатрона (объемного резонатора клистрона) по его оси.


Н. — Положительно необходимо привыкнуть к совершенно необычному виду этих колебательных контуров, используемых в технике сверхвысоких частот. И внутри этих резонаторов электроны танцуют свою румбу?

Л. — Да, если тебе нравится такое сравнение. Но правильнее было бы сказать, что электромагнитные поля заставляют электроны исполнять свой танец. Посмотри на рис. 161, чтобы понять, как это происходит.



Рис. 161. Схема двухрезонаторного клистрона. Первый резонатор модулирует электроны по скорости. В пространстве между двумя резонаторами электроны группируются в пакеты и затем возбуждают второй резонатор; на анод поступает лишь постоянный ток.


Катод испускает электроны, а анод их собирает. Между этими электродами я поместил два объемных резонатора. Плоские стенки этих резонаторов сделаны из сетки, чтобы электроны могли проходить сквозь них.

Предположим, что с помощью петли связи я возбуждаю первый резонатор небольшим напряжением сверхвысокой частоты, которое порождает в резонаторе колебания на его резонансной частоте. При прохождении электронов через две сетки резонатора они ускоряются (когда вторая сетка положительна относительно первой) или замедляются (при обратном соотношении потенциалов сеток).



Н. — Это должно породить невообразимую неразбериху. Электроны то ускоряются, то замедляются и в конечном итоге они все должны перепутаться!

Л. — Ты не так далек от истины. Если оставить достаточное расстояние, чтобы быстро летящие электроны смогли догнать двигающиеся медленно, то электроны сгруппируются в пакеты. При расчете клистрона стараются создать такие условия, чтобы наилучшая группировка электронов приходилась на момент их подхода к сеткам второго объемного резонатора. Проходя через второй резонатор, пакеты электронов отдают ему свою энергию и порождают в нем колебания значительно более мощные, чем те, которые использовались для возбуждения первого резонатора.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*