KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Радиотехника » Евгений Айсберг - Радио и телевидение?.. Это очень просто!

Евгений Айсберг - Радио и телевидение?.. Это очень просто!

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Евгений Айсберг, "Радио и телевидение?.. Это очень просто!" бесплатно, без регистрации.
Перейти на страницу:

Н. — Я предполагаю, что относительно продолжительный разряд происходит тогда, когда транзистор блокирован; в это время конденсатор С элементарно просто разряжается через резистор R. Что же касается быстрого заряда, то, как я догадываюсь, он вызывается тем, что база транзистора становится достаточно отрицательной, чтобы пропустить от эмиттера к коллектору ток насыщения. Но как происходит здесь блокирование, а затем насыщение транзистора?

Л. — Рассмотрим это, начиная с момента, когда конденсатор С полностью заряжен. Тогда его обкладка, соединенная с эмиттером, имеет дополнительный отрицательный потенциал, блокирующий транзистор.

Обрати внимание на то, что потенциал базы регулируется потенциометром R таким образом, чтобы обеспечить хорошее запирание транзистора. Этот потенциал оказывается устойчивым, ибо в качестве развязки используется электролитический конденсатор С1 большой емкости.

По мере разряда конденсатора С потенциал эмиттера становится более положительным, благодаря чему через транзистор начинает протекать ток. Проходя по подключенной к коллектору обмотке, этот ток наводит в обмотке, соединенной с базой, напряжение, делающее эту базу более отрицательной.

Н. — Я понял, что происходит! Чем более отрицательной становится база, тем сильнее возрастает ток коллектора, тем больше наводимое им через трансформатор напряжение, делающее базу более отрицательной, тем больше… Но все это, несомненно, происходит очень быстро. Таким путем ток транзистора стремительно достигает насыщения. А конденсатор С почти мгновенно оказывается заряженным. Затем все возобновляется.

Л. — Чтобы рассуждать так хорошо, ты, должно быть, проглотил не форель, а по крайней мере целого осетра, который наполнил твой мозг фосфором… Ты догадываешься, что, регулируя потенциометром R потенциал базы, устанавливают продолжительность периода каждого заряда и разряда конденсатора С. А этот период должен быть чуть больше интервала между синхронизирующими импульсами, которые через конденсатор С2 подаются на базу. Эти импульсы отрицательные и вызывают насыщение транзистора…

Существует множество других схем разверток. Но у меня не хватает времени объяснить тебе их все. Необходимо знать лишь то, что пилообразные сигналы всегда создаются зарядом и разрядом конденсатора. Я не хочу чрезмерно перегружать твою память. Отдыхай спокойно…


Комментарий профессора Радиоля

ПЕРЕДАЮЩИЕ ТЕЛЕВИЗИОННЫЕ ТРУБКИ

Какое устройство в телевизионных передатчиках преобразует световое изображение в электрические видеосигналы? Профессор Радиоль дает здесь объяснения; сначала он описывает иконоскоп — предшественник современных передающих трубок, затем переходит к различным моделям трубок, основанных на использовании материалов с фотоэмиссией или фотопроводимостью.


Теперь, дорогой Незнайкин, ты понял, как работает электронно-лучевая трубка, используемая как в телевизионных приемниках, так и в передатчиках. Электронный луч необходимо сфокусировать и заставить его отклоняться как по горизонтали, так и по вертикали, чтобы обеспечить просмотр строк и кадров. Но само собой разумеется, что в этих двух случаях пробегающий по строкам луч выполняет совершенно различные функции: если в приемниках он заставляет экран трубки светиться и при этом яркость каждого из элементов экрана пропорциональна интенсивности электронного луча, то в передающих трубках луч, пробегая по экрану, на который проецируется изображение, определяет изменения электрических сигналов в зависимости от яркости элементов передаваемого изображения.


Качества, которыми должна обладать передающая телевизионная трубка

К передающим телевизионным трубкам предъявляется ряд требований, обеспечить которые очень нелегко. Трубки должны обладать высокой чувствительностью к свету, чтобы можно было передавать слабо освещенные сцены, а также выдавать видеосигналы, строго пропорциональные широкой гамме яркостей; иначе говоря, их уровень насыщения должен быть как можно выше, и до его достижения кривая, характеризующая видеосигнал в зависимости от яркости просматриваемого элемента, должна быть как можно ближе к прямой. Кроме того, видеосигналы должны изменяться столь же быстро, как изменяется яркость последовательно просматриваемых элементов изображения. И если яркость какого-либо элемента изменяется, что нередко бывает при передаче подвижных изображений, то при следующей передаче этого элемента (что происходит всего лишь через 0,04 с) электрический сигнал должен соразмерно изменяться.

Как видишь, в требованиях, предъявляемых к передающей телевизионной трубке, недостатка нет. Ты догадываешься, что, кроме уже перечисленного, желательно, чтобы трубка не была слишком большой, чтобы она служила долго и при этом ее характеристики не изменялись, чтобы ею можно было легко пользоваться.

Посмотрим, как удается удовлетворить столько жестких условий.


Фотоэмиссия и фотопроводимость

Для преобразования яркости в электрические сигналы можно использовать вещества, обладающие фотоэмиссией или фотопроводимостью. Первые под воздействием света испускают электроны. У вторых же, когда на них падают световые лучи, снижается удельное электрическое сопротивление. К этой группе, в частности, относится селен, из которого делали самые первые фотоэлементы.

К веществам, обладающим фотоэмиссией, относятся прежде всего щелочные металлы, такие как литий, натрий, рубидий и цезий. Последний употребляется чаще других, потому что его чувствительность очень близка к спектральной чувствительности человеческого глаза: она идет от красного к фиолетовому и достигает максимума на участке зеленого, т. е. как раз посередине спектра видимого света.

Вещества, обладающие фотоэмиссией, часто называют фотокатодными веществами. В самом деле, под воздействием световых лучей они эмиттируют электроны, количество которых пропорционально интенсивности света.

Мишень, на которую объектив проецирует передаваемое изображение, должна быть покрыта мозаикой, состоящей из нескольких миллионов фотоэмиттирующих ячеек. Таким образом, каждый элемент изображения покрывает несколько ячеек.

Ты, конечно, спрашиваешь себя, как удается сделать подобную мозаику. Для этого на очень тонкую пластинку слюды напыляют крошечные капельки серебра. Затем поверх их осаждают пары цезия. Этот металл очень тонким слоем покрывает каждую капельку серебра. Так формируются эти микроскопические фотоэмиттирующие ячейки, хорошо изолированные друг от друга (рис. 193). На другую сторону пластинки наносят сплошной слой серебра.

Как ты, несомненно, догадываешься, каждая фотоэмиттирующая ячейка образует с этим слоем серебра своеобразный микрокондснсатор. А теперь посмотрим, как такая фотоэмиттирующая мишень может использоваться в передающей телевизионной трубке.



Рис. 193. Конструкция фотоэмиттирующей мишени.


Иконоскоп — предшественник современных передающих телевизионных трубок

Самая первая электронная передающая телевизионная трубка, известная под названием иконоскопа, была изобретена в 1931 г. русским исследователем Владимиром Зворыкиным. Он был ассистентом Бориса Розинга, который в 1907 г. в своей лаборатории первым использовал электронно-лучевую трубку для приема изображений. Фотоэмиттирующая мишень размещалась в глубине задней части вакуумной колбы, имеющей довольно своеобразную форму. Через плоскую стенку расположенный вне колбы объектив проецирует передаваемое изображение на фотоэмиттирующую мозаику. Каждая ячейка мозаики в зависимости от интенсивности освещающих ее световых лучей испускает большее или меньшее количество электронов. Вылетающие электроны притягиваются анодом-коллектором, представляющим собой осажденный металлический слой, покрывающий боковые стенки колбы; положительный потенциал этого анода притягивает элементарные отрицательные заряды — электроны (рис. 194).



Рис. 194. Передающая телевизионная трубка — иконоскоп, созданная в 1931 г. Владимиром Зворыкиным


Из сказанного ты легко поймешь, что каждая фотоэмиттирующая ячейка в зависимости от количества отданных ею электронов становится более или менее положительной. Следовательно, она притягивает некоторое количество электронов к обкладке, которой служит проводящий слой, нанесенный на заднюю поверхность слюдяной пластинки.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*