Жан-Поль Эймишен - Электроника?.. Нет ничего проще!
Рассмотрим изображенное на рис. 92 реле. Размер реле в значительной степени определяется размерами катушки. Катушка состоит из некоторого количества витков провода определенного сечения и с определенным сопротивлением. Предположим, что мы заменим этот провод другим с втрое меньшим диаметром. Как изменится его сечение?
Рис. 92. Реле (его условное обозначение приведено справа) имеет катушку, создающую магнитное поле, под действием которого притягивается якорь, что приводит к замыканию или размыканию так называемых рабочих контактов.
Н. — Очень просто, в 3 раза.
Л. — За такой ответ, Незнайкин, я ставлю тебе нуль. Как можешь ты утверждать, что при уменьшении диаметра круга в 3 раза его площадь уменьшается во столько же раз? Ведь ты уже давно должен знать, что площадь круга пропорциональна квадрату его радиуса! Следовательно, уменьшив в 3 раза радиус (или диаметр) провода, мы в 9 раз уменьшим его сечение, что позволит нам при тех же размерах катушки намотать провода в 9 раз больше. Можешь ли ты сказать, какое сопротивление будет иметь наша новая катушка?
Н. — На этот раз все очень просто. Длина провода увеличилась в 9 раз, значит и его сопротивление стало в 9 раз больше.
Л. — На этот раз ты, Незнайкин, переходишь всякие границы! Разве ты забыл, что длина провода увеличилась в 9 раз, а его сечение уменьшилось тоже в 9 раз; следовательно, сопротивление провода возросло в 81 раз.
Н. — Вот так раз! Я никогда не подумал бы, что при уменьшении диаметра провода только в 3 раза так резко растет его сопротивление. Но ведь прохождение тока по такому проводу вызовет колоссальное рассеяние мощности.
Л. — Совсем нет. Раз новая катушка имеет витков в 9 раз больше, чем первая, то пропускаемый ток можно уменьшить в 9 раз. А принимая во внимание, что рассеиваемая мощность пропорциональна сопротивлению и квадрату тока, рассеиваемая в новой катушке мощность будет точно такой же, как в первой катушке. Полученный нами результат дает лишь самое общее представление; после определения объема меди в катушке только рассеиваемая в этой катушке мощность характеризует магнитное воздействие на якорь реле. Поэтому, характеризуя реле, говорят, что его мощность возбуждения 1 вт или 1/2 вт. Реле с катушкой из толстого провода рассчитано на управление большим током при низком напряжении, а реле с катушкой из тонкого провода включается в цепи с небольшим током при более высоком напряжении.
Обычные реле часто требуют для управления мощность около 1 вт. У более чувствительных реле для притягивания якоря достаточно 0,2 или даже 0,1 вт. Ультрачувствительные реле могут срабатывать при мощностях возбуждения порядка милливатта; обычно они способны включать и выключать только очень небольшие токи и поэтому непосредственно в исполнительных цепях совершенно не используются. Их применяют для приведения в действие промежуточных более мощных реле.
Транзистор управляет реле
Н. — Мне в голову пришла великолепная идея: а что если ток пустить не прямо в обмотку реле, а подать его на базу транзистора, коллекторный ток которого протекает по катушке реле, ведь тогда для включения реле потребовалась бы значительно меньшая мощность. В случае надобности нужную мощность управляющего сигнала можно сократить, введя в схему еще один усилительный каскад на транзисторе.
Л. — Ты совершенно прав, Незнайкин, и мне остается лишь добавить, что эта идея уже предложена и даже реализована. Заводы уже выпускают реле, у которых рядом с катушкой размещается транзисторный усилитель (рис. 93); такие реле для своего управления требуют ничтожных мощностей. Существуют даже реле, в которых перед усилителем стоит триггер Шмитта, который с высокой точностью определяет уровни срабатывания и отпускания реле.
Рис. 93. Для эффективного управления работой реле можно использовать транзистор.
Н. — Опять кто-то меня опередил… Я уже начинаю сомневаться, что мне когда-нибудь удастся раньше других найти что-нибудь новое!
Л. — Не стоит отчаиваться, Незнайкин, будет и на твоей улице праздник. Но сначала нужно хорошо овладеть техникой. Это абсолютно необходимо, чтобы раньше других находить новинки. Но вернемся к нашим реле. Я хочу сказать тебе несколько слов о совершенно незнакомой тебе категории реле, о так называемых поляризованных реле. В этих реле имеется постоянный магнит, сила которого складывается с силой притяжения катушки, иначе говоря, в зависимости от направления тока катушка притягивает или отталкивает якорь. Поляризованные реле срабатывают только при одном определенном направлении тока в катушке.
Н. — Такого результата можно было бы достичь значительно проще: достаточно последовательно с катушкой включить простой диод.
Л. — Да, если задача заключается только в том, чтобы реле срабатывало при заданном направлении тока, но поляризованное реле способно на большее. Можно сделать так, что подвижный якорь при направлении тока, принятом в качестве положительного, переместится вправо и замкнет определенный контакт. В отсутствие тока якорь может оставаться в среднем положении, а при подаче тока обратного направления якорь переместится влево и замкнет другой контакт. Такое реле обладает большими возможностями, чем обычное реле с диодом, включенным последовательно с катушкой. Впрочем, Незнайкин, ты знаешь, что в обычных реле имеется так называемый нормально замкнутый (НЗ) контакт, который замкнут, когда реле не возбуждено; при срабатывании этот контакт размыкается. Обычно для размыкания нормально замкнутого контакта и для замыкания нормально разомкнутых (HP) контактов при притягивании якоря используются одни и те же подвижные контакты. В этом случае мы имеем дело с перекидной контактной группой. В одном реле может быть несколько таких контактных групп[14] (рис. 94).
Рис. 94. Одна катушка может приводить в действие две перекидные контактные группы, размыкая два нормально замкнутых контакта и замыкая два нормально разомкнутых контакта.
Меры предосторожности при использовании транзистора для управления реле
Н. — Я полагаю, что теперь я все знаю о реле.
Л. — Я всегда знал, что скромность никогда не была твоим основным качеством, Незнайкин. О реле написаны целые тома, я же ограничусь еще некоторыми деталями. Прежде всего, знаешь ли ты, какие особые меры предосторожности необходимо принять, когда для управления током в катушке реле используют транзистор или электронную лампу?
Н. — Я полагаю, что следует выбрать транзистор или лампу, способные без особого труда дать необходимый ток.
Л. — Естественно, это первое условие, но одного его недостаточно. Можешь ли ты себе представить, что произойдет, если после установления тока в катушке реле транзистор резко запирается соответствующим напряжением, поданным на его базу?
Н. — В этих условиях ток в катушке обрывается и якорь отходит от сердечника катушки.
Л. — Твое невежество, Незнайкин, может иметь самые гибельные последствия. Ты, кажется, забыл, что катушка реле обладает высоким значением самоиндукции и что поэтому она довольно резко противодействует быстрым изменениям тока. Есть еще один принцип, который я посоветовал бы тебе вырезать на своем камине, если там еще осталось свободное место. Принцип этот сводится к следующему:
«Проходящий по катушке ток не может измениться на конечную величину за бесконечно малое время».
Следовательно, если, желая резко прервать ток в катушке, мы запрем транзистор, то на выводах катушки возникает напряжение, которое может достичь высокого значения. Это напряжение может оказаться настолько большим, что разрушит транзистор или катушку реле или, если нам особенно не повезет, то и другое одновременно.
Н. — И это ты называешь невезением? Я бы просто сказал, что это нормальное проявление хорошо известной теоремы «о бутерброде с маслом».
Л. — О чем там идет речь?
Н. — Теорема гласит, что когда ты роняешь бутерброд с маслом, он всегда падает намазанной стороной вниз и полностью опровергает любые расчеты, основанные на теории вероятностей.
Л. — На мой взгляд, дорогой Незнайкин, в твои объяснения вкралась небольшая неточность. Дело в том, что наличие масла несколько сместило центр тяжести бутерброда, и мне представляется, что для твоей знаменитой теоремы можно найти физическое, а не мистическое объяснение. Но оставим эти высокие рассуждения и вернемся к нашим реле. Мы должны констатировать, что значительные перенапряжения возможны и поэтому следует заняться поиском средства для защиты от них реле и управляющего им транзистора. Существует довольно простой метод, заключающийся в использовании полупроводников, сопротивление которых изменяется в зависимости от приложенного к ним напряжения, иначе говоря, речь идет об элементах, не подчиняющихся закону Ома. Такие приборы называют варисторами (резисторы, сопротивление которых зависит от приложенного напряжения). Так, например, существует варистор, который при напряжении 12 в пропускает ток 5 ма, а при напряжении 24 в пропускает ток, в 15 раз больший 75 ма. Такой варистор можно включить параллельно катушке реле, рассчитанной на 12 в. При резком выключении проходящего по катушке тока, если этот ток не превышает 75 ма, он сначала пройдет по варистору и поднимет там напряжение всего лишь до 24 в, а оно быстро спадет. При обычных рабочих условиях напряжение на выводах варистора равно 12 в, и поэтому этот элемент потребляет только 5 ма, что практически ничтожно по сравнению с большим током, потребляемым реле.