KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Радиотехника » Евгений Айсберг - Транзистор?.. Это очень просто!

Евгений Айсберг - Транзистор?.. Это очень просто!

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Евгений Айсберг, "Транзистор?.. Это очень просто!" бесплатно, без регистрации.
Перейти на страницу:

Н. — О дальнейшем я догадываюсь. Третья обмотка, насаженная на тот же сердечник, но имеющая значительно больше витков, повышает напряжение переменного тока, после чего остается только выпрямить этот ток диодом и отфильтровать при помощи цепочки, состоящей из резистора R3 и конденсаторов С2 и С3.

Л. — Ты, Незнайкин, еще раз доказал свою изумительную ясность ума, я тебя поздравляю! Я думаю, что ты хорошо усвоил мои уроки и не встретишь трудностей в предстоящих путешествиях по лабиринтам транзисторных схем. Однако следует сказать, что полупроводниковая техника непрерывно развивается и завоевывает новые области (в том числе и телевидение) и прогресс технологии, несомненно, приготовит нам немало сюрпризов. Поэтому я должен дать тебе добрый совет: не отставай от этого прогресса. Внимательно следи за ним, читай статьи, появляющиеся в технической периодической литературе. Всегда помни слова Фрэнсиса Бэкона: «Тот, кто не обновляется — разрушается, так как неумолимое течение времени все изменяет». И, наконец, без колебаний применяй свои знания на практике и сам экспериментируй со схемами на транзисторах. Тогда ты лучше осознаешь тот факт что…

Н. — …транзистор?.. Это очень просто!


МИКРОЭЛЕКТРОНИКА

Письмо Любознайкина Незнайкину

Дорогой друг Незнайкин!

Как обещал тебе сегодня утром во время разговора по телефону, я попытаюсь кратко изложить прогресс в области полупроводниковой техники, происшедший со времени нашей последней встречи.

Создание транзистора открыло путь к миниатюризации электронной аппаратуры. Малые размеры кристаллического триода и практически полное отсутствие излучения тепла (за исключением мощных транзисторов) позволили значительно уменьшить габариты всех электронных аппаратов.

Но сейчас мы переживаем новый этап — этап микроэлектроники. Чтобы рассмотреть структуру устройств, реализуемых в настоящее время на базе полупроводниковой техники, необходимо прибегать к помощи микроскопа. Осуществленная в интегральных микросхемах плотность монтажа измеряется тысячами компонентов на кубический сантиметр.

Как достигается такое снижение размеров? Я постараюсь объяснить это тебе.


Технологические процессы

Уже существует множество новых микроминиатюрных устройств и каждый год появляются все новые. Поэтому было бы неразумно пытаться рассмотреть здесь все такие устройства.

Но было бы полезно описать основные технологические процессы, используемые для изготовления этих разнообразных приборов — от простого планарного транзистора до интегральных микросхем. (Наберись терпения, дорогой друг, чуть дальше я объясню тебе значение этих терминов.)

Так вот основные используемые в наши дни технологические процессы.

Окисление кремния. Изолирующий слой на поверхности кремния (основного используемого в микроэлектронике полупроводникового материала) может создаваться путем окисления самого кремния. Для этого кремний нагревается до температуры от 800 до 1300 °C в атмосфере кислорода или паров воды. В результате такого воздействия его поверхность покрывается тонким слоем двуокиси кремния (она известна под названием кварца), представляющего собой прекрасный диэлектрик. Толщина этого слоя меньше одного микрона или микрометра (тысячной доли миллиметра).

Эпитаксиальный процесс. Удельное сопротивление содержащего примеси кремния очень мало, что в некоторых случаях является серьезным недостатком. Его устраняют путем наращивания эпитаксиального слоя, в котором молекулы кремния образуют безупречную кристаллическую структуру. Об этом свидетельствует сама этимология термина: «эпи» по-гречески означает «над» (отсюда происходит слово «эпидермис» — кожный покров), а «таксис» — «порядок». Кремний, расположенный под эпитаксиальным слоем, служит для последнего механической подложкой.

Для формирования такого слоя, толщина которого может быть от 5 до 15 мкм, кремний нагревают в атмосфере водорода до температуры 1300 °C, а затем температуру постепенно снижают до 1180 °C, впуская в нагретую камеру тетрахлорид кремния. Последний, реагируя с водородом, образует газообразный хлористый водород и атомы кремния, которые в идеальном порядке осаждаются на поверхность полупроводника.

Фотолитографический процесс и маскирование. Изготовители полупроводниковых устройств прибегают к технике, используемой для изготовления типографских клише. Знаком ли ты с ней, Незнайкин?

Коротко говоря, процесс изготовления клише, выпуклые элементы которого смазываются краской и служат для переноса изображения на бумагу, начинается с фотографирования воспроизводимого рисунка на светочувствительной пленке. Во время этой операции можно в заданное число раз увеличить или уменьшить фотографируемое изображение. После этого пленка накладывается на цинковую пластинку, предварительно покрытую лаком, который под воздействием света отвердевает и становится нерастворимым в жидкости, в которой он обычно растворяется. Облучая цинковую пластинку, прикрытую пленкой с негативным изображением рисунка, а затем обрабатывая экспонированную таким образом пластинку жидким растворителем, удаляют лак со всей ее поверхности за исключением участков, образующих изображение. Затем незащищенные участки цинка травятся кислотой: в результате этой операции получают клише с рельефным рисунком.

Именно эта техника широко применяется в микроэлектронике. Рисунок с очень большим уменьшением фотографируют на стеклянную пластинку или на другой светочувствительный материал с прозрачной подложкой. Таким образом получают «маску», где рисунок образован непрозрачным тонким слоем хрома. Эта маска накладывается на поверхность полупроводника, предварительно покрытого светочувствительным лаком, отвердевшим при нагревании до 90 °C; этот лак наносится равномерным слоем тоньше микрометра.

Лак через маску облучается сильным светом, который делает нарастворимыми участки, не прикрытые хромовыми элементами изображения. После этого достаточно опустить полупроводниковую пластину в соответствующий растворитель, чтобы лак остался только на участках, которые были защищены.

Оставшийся лак делают еще более прочным путем нагрева до 150 °C. И теперь наш полупроводник готов для обработки жидкостями, способными стравить поверхность, или парами, вносящими примеси p-типа или n-типа, или подвергнуться металлизации частичками алюминия или другого металла с целью соединения различных точек будущей схемы проводящими ток полосками.

Для полноты картины я должен добавить, что в последнее время имеется тенденция вместо видимого света все чаще использовать ультрафиолетовые лучи. Я догадываюсь о твоем удивлении, дорогой друг. Но для такой замены есть две причины. Во-первых, химическое воздействие ультрафиолетовых лучей сильнее, чем видимого света. (Ты, вероятно, еще не потерял свой бронзовый загар от высокогорного солнца, богатого ультрафиолетовыми лучами.) Во-вторых, использование этих очень коротких волн объясняется также и тем, что другие волны… слишком длинные. Да, мой дорогой друг, волны видимого света длиной от 0,38 мкм (фиолетовый) до 0,78 мкм (красный) слишком длинные. Видишь, до чего мы дошли.

После завершения серии операций, начавшихся с равномерного нанесения лака на поверхность полупроводниковой пластины, лак местами удаляют, образуя «окна», т. е. участки, открытые для различных видов обработки.

Одна из наиболее часто выполняемых после образования «окон» операций заключается в удалении изолирующего слоя двуокиси кремния, покрывающего поверхность полупроводника. Для этой цели полупроводниковую пластину погружают в ванну, содержащую плавиковую кислоту и фтористый аммоний, которые растворяют все незащищенные участки двуокиси кремния.

Диффузия. В эти же участки полупроводника можно ввести некоторое количество примесей p-типа или n-типа, если нагреть пластинку в атмосфере паров соответствующих веществ. Примеси можно также наносить на пластинку, нагретую до температуры, необходимой для проникновения примесей через окна, в результате этой операции в полупроводнике в зависимости от используемых материалов образуются p-зоны или n-зоны.


Планарный эпитаксиальный транзистор

Теперь, после того как мы проанализировали основные фазы производства, в качестве примера рассмотрим, каким образом изготовляют одну из наиболее распространенных разновидностей транзисторов — планарный эпитаксиальный транзистор.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*