Михаил Николаенко - Самоучитель по радиоэлектронике
При высоком входном сопротивлении цифрового мультиметра (приблизительно 10 МОм) в режиме измерения переменных сигналов на индикаторе нередко появляется напряжение (иногда до 220 В), хотя измерительные щупы не присоединены. На самом деле так проявляется антенный эффект, обусловленный, как правило, работой расположенного поблизости мощного прибора. Если цель измерения — убедиться в отсутствии напряжения перед проведением работ на схеме, это будет существенной помехой. В подобных случаях надо использовать либо гальванометрический (неэлектронный) вольтметр, либо индикатор напряжения.
4.2.5. Режим короткого замыкания
На стадии наладки схемы иногда требуется выполнить временное замыкание двух точек, чтобы проверить работу управляющей схемы реле или светодиода в режиме короткого замыкания, прежде чем монтировать схему в корпус. Включение мультиметра, выполняющего функцию амперметра и рассчитанного на соответствующий ток, вполне заменяет рискованную процедуру замыкания проводов. Измерительные щупы обеспечат электрический контакт, в то время как предохранитель, включенный последовательно с амперметром, гарантирует безопасность этого временного соединения.
После подобных манипуляций, как и всегда после использования мультиметра в качестве амперметра, измерительные провода сразу необходимо переместить в гнезда вольтметра. Это дает гарантию того, что при следующем использовании мультиметра в схеме или, что еще хуже, в сети не произойдет случайное короткое замыкание.
4.2.6. Мегаомметр
Мегаомметр используется для измерения сопротивления изоляции проводов или кабелей с целью определения их пригодности к использованию. Следует отметить некоторые особенности при работе с мегаомметром. В нем вырабатывается высокое напряжение, и если в установке, где производится измерение, есть элементы, которые могут быть повреждены этим напряжением, например, конденсаторы и полупроводниковые приборы, то они должны быть отсоединены или их выводы закорочены.
Не допускается пользование загрязненным и покрытым влагой прибором, так как это может исказить показания.
Перед измерением прибор должен быть проверен соединением концов его проводов при вращении рукоятки, при этом стрелка прибора должна показать «нуль», а при рассоединении проводов — «бесконечность». Чтобы прибор вырабатывал нужное напряжение, его рукоятку нужно вращать с частотой не меньшей, чем указана на щитке со шкалой.
4.2.7. Измерение емкости и индуктивности
В практических схемах измерителей напряжение треугольной формы прикладывается к измеряемой емкости, при этом ток, идущий через нее, имеет форму меандра и его амплитуда пропорциональна измеряемой емкости. При измерении индуктивности через нее пропускается ток треугольной формы, падение напряжения на индуктивности имеет форму меандра и пропорционально ее величине. Измеряемая емкость и эталонный резистор подключаются в соответствии с рис. 4.5а, а измеряемая индуктивность — по схеме рис. 4.56.
Рис. 4.5. Принцип измерения емкости (а) и индуктивности (б)
4.3. Использование осциллографа
Осциллограф становится относительно простым в использовании прибором после первого знакомства с ним. Затруднение может вызывать лишь изучение и запоминание функции каждого из различных органов управления на передней панели, где имеется множество ручек, лимбов, переключателей, кнопок и соединителей. Для непосвященных это кажется очень трудным. Изучите назначение каждого органа управления и проследите за картинкой на экране при использовании этих ручек. В результате вы быстро все поймете. Одним из лучших способов изучения функций и методов использования осциллографа является получение по возможности большего опыта во время практической работы.
4.3.1. Кабели для осциллографа
Желательно использовать осциллограф двухканального типа, так как он позволяет наблюдать одновременно два отдельных сигнала. Следовательно, он имеет два входных кабеля и соединителя. Они обычно маркируются как канал 1 и 2 или А и В. Различают два основных типа кабелей — прямой и аттенюаторный.
Кабель прямого типа является коаксиальным кабелем с двумя выводами, которые обычно имеют концевую заделку в виде щупов-наконечников или посредством зажимов типа «крокодил» для подключения к схеме. В любом случае данный кабель подводит сигнал, который должен воспроизводиться на экране, напрямую (без ослабления) к осциллографу.
С аттенюаторным типом соединителя также используется коаксиальный кабель, но в общем случае применяется щуп вместо зажимов типа «крокодил». Узел щупа содержит последовательный резистор с большим сопротивлением, которое вместе с полным входным сопротивлением осциллографа формирует делитель напряжения. Таким образом, данный щуп и кабель выполняют ослабление (аттенюацию) сигнала в 10 раз.
Преимуществом такого кабеля является то, что он создает меньшую емкостную нагрузку для схем высокой частоты, позволяя визуализировать высокочастотные сигналы и сложные формы сигнала. Чтобы получить корректное измерение амплитуды сигнала, не забудьте измеренное значение умножить на 10.
4.3.2. Измерение амплитуды
Для амплитудных измерений используется откалиброванная или координатная сетка на экране электронно-лучевой трубки для определения числа делений между максимальными положительным и отрицательным отклонениями сигнала {такое измерение называется измерением размаха, или двойной амплитуды, сигнала).
Осциллограф визуализирует на экране синусоидальный сигнал. Это наиболее легкий и более точный метод для измерения размаха сигнала. Осциллограф позволяет видеть сигнал, а также любой шум, искажение или помехи, которые могут его сопровождать. Он может выполнять измерения напряжений сигналов с частотой до нескольких сот мегагерц.
В отличие от мультиметра осциллограф не позволяет измерить ток. Единственным способом измерить ток при помощи осциллографа является косвенный способ, а именно, надо измерить напряжение на участке цепи, преобразовать размах в эффективное значение, а затем разделить его на известное сопротивление участка цепи.
При выполнении тестов и измерений в электронике обычно является необходимым преобразование эффективных значении в значения размаха и наоборот. Эффективные (среднеквадратические, действующие) значения напряжения и тока связаны со значениями размаха (двойного амплитудного) следующими соотношениями:
UPP = 2,828·URMS
IPP = 2,828·IRMS
URMS = 0,3535·UPP
IRMS = 0,3535·IPP
где индексы: РР — размах, RMS — эффективное значение.
4.3.3. Измерение частоты
Для измерений частоты F на осциллографе сначала нужно измерить период Т сигнала. Период — это время одного цикла. Самый простой способ сделать это — подсчитать количество горизонтальных делений между двумя последовательными пиками сигнала. Тогда частота F = 1/T.
4.3.4. Проблема заземления
Сетевой шнур осциллографа снабжен заземляющим проводом, который соединен с шасси прибора внутри корпуса. Общая точка входов и выходов (зондов, синхросигналов) также связана с шасси. В домашних электроустановках корпус соединяется с заземляющим нейтральным проводом сети.
Такой тип подключения, разработанный для безопасности пользователя, вызывает серьезную проблему при проведении измерений в схемах, прямо или косвенно связанных с сетью. К ним относятся, например, схемы на симисторах или схемы, питающиеся от устройств с конденсаторами (без трансформатора). В этих случаях существует риск короткого замыкания, которое обычно не представляет опасности, поскольку срабатывает предусмотренная защита. Однако это плохо влияет на работу осциллографа. В таком случае следует убрать соединение с нейтралью, например, подключив переходник с трехконтактной вилки на двухконтактную или модифицировав многоконтактную вилку. Не нужно отсоединять заземляющий провод от корпуса осциллографа! Необходимо подчеркнуть, что такое подключение носит временный характер и должно быть изменено после проведения работ.
4.3.5. След луча
Срок службы электронно-лучевой трубки осциллографа существенно сокращается, если след луча без необходимости будет иметь вид точки, расположенной в одном и том же месте (возможно выгорание люминофора в этом месте). Поэтому после каждого измерения с такой необычной настройкой нужно возвращать временную развертку в состояние, при котором след луча имеет вид прямой линии.