KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Радиотехника » Евгений Айсберг - Цветное телевидение?.. Это почти просто!

Евгений Айсберг - Цветное телевидение?.. Это почти просто!

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Евгений Айсберг, "Цветное телевидение?.. Это почти просто!" бесплатно, без регистрации.
Перейти на страницу:

BY = 0,3; bY = 0,086

RY = 0,3; rY = 0,086


Теорема II. Равные нулю координаты цветности характеризуют нейтральный серый цвет. Точка, символизирующая нейтральный серый, черный или белый цвета, находится у начала координат графика цветности.

Действительно,

R — Y = B — Y = 0

применяя уравнение D), выводим;

G — Y = 0

и, следовательно, получаем:

R = G = B = Y,

а мы знаем, что цвет, состоящий из равных количеств всех трех основных цветов, по своей природе ахроматичен (закон Ньютона). Следовательно, нейтральный серый цвет полностью характеризуется одной своей яркостью.


Теорема III. Расстояние L от символизирующей цвет точки Р до начала координат О характеризует насыщенность.

Представим себе цвет со следующими составляющими: R1, G1 и В1 при яркости Y1.

Расстояние от точки Р до начала координат О равно:


Если разбавить этот цвет путем добавления к нему некоторого количества q белого цвета, то его координаты примут следующий вид:

R1 + q; G + q и B1 + q при яркости Y1 + q

Чтобы сравнить эти два цвета, имеющие все равные условия, умножим координаты на величину:


Тогда оба цвета будут иметь одинаковую яркость и будут различаться между собой только насыщенностью. Новые основные цвета будут характеризоваться следующими выражениями:

и

Y2 = Y1.

Рассчитаем сигналы цветности:

и



Чем больше добавляют белого, т. е. увеличивают q, или, иначе говоря, разбавляют цвет, тем при одинаковой яркости обозначающая этот цвет точка все больше приближается к началу координат.

Из этого можно сделать вывод, что расстояние от символизирующей цвет точки до начала координат отображает насыщенность цвета.

Однако не следует спешить с выводом, что это расстояние пропорционально насыщенности.

Рассмотрим случай трех одинаково насыщенных основных цветов.

Для чистого красного цвета мы имеем:

(R = 1, G = 0, B = 0);

Y = 0,3 и L = 0,7;

L/Y = 2,34

Для чистого зеленого цвета имеем:

(R = 0, G = 1, B = 0);

Y = 0,6 и L = 0,85;

L/Y = 1,41

Для чистого синего цвета имеем:

(R = 0, G = 1, B = 1);

Y = 0,1 и L = 0,9;

L/Y = 9

Это справедливо только для одного конкретного цветового тона.


Теорема IV. На графике цветности угол, образуемый осями координат и лучом, исходящим из начала координат и проходящим через символизирующую цвет точку Р, характеризует цветовой тон.

Обозначим этот угол знаком φ (рис. 22).



Рис. 22. Угол, образованный горизонтальной осью и исходящим из начала координат вектором, характеризует цветовой тон, т. е. доминирующую длину волны изображаемого цвета. На этом графике нет пурпурных цветов, которые, как известно, не бывают монохроматическими (следовательно, для них нет возможности определить доминирующую длину волны).


Положение точки Р определяется величинами (R — Y) и (В — Y). Теперь обозначим на графике цветности точки, символизирующие основные цвета R, G и В и дополнительные цвета С (сине-зеленый), М (пурпурный) и J (желтый). Само собой разумеется, что эти последние симметричны первым относительно начала координат О. Теперь мы можем измерить для каждого из цветов угол φ, а также рассчитать величину этого угла для любого цвета, используя для этой цели следующую формулу:


Теперь проведем кривую φf (цветовой тон).

Следовательно, находя место каждой точки на графике цветности в полярных координатах, мы тем самым одновременно определяем для нее цветовой тон и насыщенность.

Отметим, что график цветности можно рассматривать как сечение цилиндра цветов (см. гл. 3) по плоскости, перпендикулярной оси яркостей.

Глава 5

ПЕРЕДАЮЩИЕ СИСТЕМЫ

Здесь мы вновь встречаемся с нашими друзьями, которые кратко рассматривают различные возможные системы передачи цветных изображений. И в виде заключения они излагают основные принципы различных используемых в настоящее время совместимых систем цветного телевидения. Попутно они рассматривают следующие темы:

Трехканальные передающие системы. Использование одного объектива. Дихроичные зеркала и фильтры. Телевизионная камера. Трапецеидальная аберрация. Тринескоп. Системы с поочередным сложением цветных полукадров. Проблема ширины передаваемого спектра частот. Двойная совместимость. Разделение сигналов яркости и цветности. Роль несущей. Выделенные диапазоны частот. Кодирующее и декодирующее устройства.


Незнайкин открывает Америку

Незнайкин. — До сих пор, Любознайкин, ты, если так можно выразиться, показывал мне все краски, но о телевидении не было речи.

Любознайкин. — А разве прежде, чем приступить к проблеме передачи цветных изображений, не следует детально разобраться, как мы это делали, в различных физических и физиологических аспектах такого особенно сложного явления, как цвет?

Н. — Несомненно. Но я полагаю, что теперь моих знаний в этой области достаточно, чтобы я смог сам придумать одновременно простую и эффективную систему цветного телевидения. Я намереваюсь взять на свое изобретение патент, но тебе по секрету расскажу принципы этой системы.

Л. — Я сгораю от нетерпения познакомиться с твоим последним изобретением.

Н. — Система очень проста, но, как и в случае с яйцом Христофора Колумба, нужно было додуматься. Трехцветный принцип получения цветных изображений позволяет воспроизводить все краски с помощью трех основных цветов, красного, зеленого и синего, поэтому я предлагаю воспользоваться для телевизионной передачи тремя камерами, объективы которых снабжены фильтрами названных цветов. Таким образом мы получим видеосигналы, соответствующие красному, зеленому и синему изображениям. Мы передадим их на трех разных волнах на три проекционных телевизионных приемника, объективы которых также будут снабжены соответствующими цветными фильтрами. Проецируя эти три изображения на один экран так, чтобы они точно накладывались одно на другое, мы получим цветное изображение (рис. 23). Вот и все!



Рис. 23. Система одновременной передачи цветов, в которой в передающей и приемной частях используются три полных канала. Изображение воспринимается тремя камерами R, В и G, снабженными соответственно красным, синим и зеленым фильтрами. Сигналы с этих камер модулируют излучение трех передатчиков Еr, Еb и Eg. Передаваемые волны принимаются приемниками Rr, Rb и Rg; усиленные сигналы модулируют три проекционных кинескопа, снабженных красным, синим и зеленым фильтрами, а проецируемые изображения накладываются одно на другое на экране.


Л. — Мой друг, я еще раз должен разочаровать тебя и сказать, что Такая система уже очень давно была предложена.

Н. — Несчастный я! Почему я не родился раньше! Уже все изобрели до меня!.. А теперь ты, по-видимому, еще скажешь, что эта система ничего не стоит и что от нее уже давно отказались.

Л. — Ну в этом-то, дорогой друг, ты заблуждаешься. Этот принцип и в наши дни широко используется в замкнутых телевизионных системах. Так, например, благодаря такой системе сотни студентов медиков, сидя в обычной аудитории, могут наблюдать за всем ходом хирургической операции, не мешая своим присутствием работающим в операционной людям. Цвет в данном случае позволяет лучше видеть, что происходит в операционной. Это показывает, что твоя идея неплоха, но ее применение несколько ограничено, а кроме того, в подобных системах приходится прибегать к определенной коррекции.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*