KnigaRead.com/

Оливер Сакс - Мигрень

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Оливер Сакс, "Мигрень" бесплатно, без регистрации.
Перейти на страницу:

Принцип самоорганизации, самопроизвольно возникающей сложности, открывает перед нами новый ослепляющий взгляд на природу – творящую или эволюционную перспективу вместо (или как дополнение) принципов «часового механизма» и «тепловой смерти». Самоорганизующиеся системы являются в природе правилом, но, как это ни парадоксально, «открыты» они были лишь тридцать лет назад, а ее математический анализ был выполнен спустя несколько лет – после того как появилась теория хаоса. Теперь мы видим, как напоминает нам Пригожин, что природа «мыслит» неинтегрируемыми дифференциальными уравнениями, «мыслит» в понятиях хаоса и самоорганизации, «мыслит» в понятиях нелинейных динамических систем. («Вселенная, – говорит Пригожин, – подобна гигантскому мозгу».) Эти системы выходят далеко за пределы равновесных состояний, и это отсутствие равновесия придает им чувствительность к возмущениям, способность радикально и непредсказуемо изменяться, порождать и развертывать новые структуры и формы. Такие системы с их «универсальным поведением», как именуют эти свойства хаологи, оставались незамеченными в нашей повседневной жизни, несмотря на их необыкновенно широкую распространенность. Никто раньше просто не подозревал об их существовании.

Пол Дэвис, космолог, пишет:

«В течение трех столетий в науке господствовали ньютонианские и термодинамические парадигмы, представлявшие Вселенную либо в виде стерильного механизма, либо в виде распадающейся и гибнущей системы. Теперь появилась новая парадигма творящей Вселенной. Теория этой парадигмы учитывает прогрессивный, обновляющий характер физических процессов» (1988).

Если мы спросим, почему этот новый взгляд не появился в науке раньше (интуитивно он был ясен всегда), то отчасти ответ будет заключаться в идеальных свойствах науки, которая в своих исследованиях пользуется упрощенными моделями, редко соответствующими сложностям реального мира. Вся классическая динамика основана на таких упрощениях – мы анализируем движение маятника (не учитывая сил трения) или движение двух небесных тел (не учитывая их взаимодействий с другими телами). Эти упрощенные или идеальные системы находятся в вечном равновесии; в них нет возмущений, нет «стрелы времени».

Но естественные природные системы, вообще говоря, не являются закрытыми, они открыты и обмениваются с окружающей средой; они, эти системы, часть мира со всеми его превратностями. Эта открытость к окружающей среде является причиной непредсказуемых флуктуаций, заставляющих системы все больше и больше отклоняться от состояния равновесия. Вскоре состояние системы доходит до критической точки – до сингулярных точек, о которых пишет Клерк Максвелл, – и в этой точке происходит внезапное резкое изменение, так называемая бифуркация; здесь многократно усиленная флуктуация переводит систему в новую фазу, в которой система начинает движение к следующей точке бифуркации. Так происходит стремительная дивергенция, открывающая перед системой бесчисленные альтернативные пути. В классической закрытой системе флуктуации быстро затухают и подавляются. В открытых, реальных, системах верно противоположное, флуктуации становятся «двигателем» всего процесса. Пригожин называет этот феномен «упорядочивающими флуктуациями» и считает его фундаментальным организующим принципом природы.

Конечно, не один Пригожин находится на переднем крае, не он один сделал это открытие и не он один разделяет новое мышление. Открытия в этой области делали многие исследователи, здесь даже имела место конкуренция, а сами открытия делались в десятках не зависящих друг от друга областях науки, и только теперь мы видим, что все они – на глубинном уровне – тесно взаимосвязаны. Так, примером открытой системы является атмосфера, приводившая в отчаяние метеорологов, тщетно старавшихся точно предсказать погоду. До начала шестидесятых годов господствовало мнение о том, что если располагать более полным знанием о состоянии системы и иметь в распоряжении достаточное количество быстродействующих компьютеров, то появится возможность делать точные долгосрочные прогнозы погоды. Эдвард Лоренц доказал, что это не так, потому что система не является линейной и описывающие ее дифференциальные уравнения в частных производных не могут быть решены однозначно. Вместо этого они расходятся и распадаются на множество альтернативных уравнений.

Эта область исследований дала начало совершенно новой отрасли науки – теории хаоса, или нелинейной динамики. Сейчас мы все больше и больше убеждаемся в том, что теория хаоса дает нам ключ к пониманию сложности и необратимости происходящих в природе процессов [71].

Другой подход к решению проблемы был предложен Бенуа Мандельбротом, открывшим фракционные («фрактальные») периодичности и измерения. В своей книге «Фрактальная геометрия природы» Мандельброт демонстрирует компьютерные узоры, до жути напоминающие облака, снежинки, деревья, горные хребты и пр. Это целый мир «природных» ландшафтов, разительно отличающихся масштабом – от геологического до микроскопического. Характерной чертой природных форм является то, что они одновременно существуют в разных масштабах, сохраняя на каждом уровне свою форму, то есть являются изоморфными, независимо от их величины в любой координатной шкале. Так, если «картины Мандельброта» увеличить или проанализировать с помощью компьютера, то мы увидим бесконечную последовательность одинаковых паттернов, причем все они, если можно так сказать, с самого начала присутствовали в структуре. Все это очень похоже на «геометрические орнаментальные структуры», о которых говорит Клювер, структуры, содержащие потенциально бесконечную последовательность тождественных форм, имеющих все более и более мелкий масштаб. Такие феномены непостижимы в пределах привычного евклидова мира, но представляются совершенно естественными и даже необходимыми, если принять идею фракционного измерения или фрактала.

Итак, в течение последних двадцати лет происходит новая революция, объединяющая концепции и открытия многих отраслей науки. Благодаря этой революции мы теперь в состоянии видеть, как говорит Фейгенбаум, «поведение Вселенной» в действии, на всех уровнях – от космического до нейронного (Фейгенбаум, 1980). Эта невероятная сложность поведения вселенной является зримым опровержением взглядов, согласно которым реальность должна быть «простой». Анализ реального поведения вселенной и составление ее адекватной картины требуют не только создания новых отраслей математики, но и разработки сверхмощных компьютеров.

Новая модель мигренозной ауры

Волнующий прогресс науки заставил нас заново взглянуть на не поддающуюся прежде решению проблему сложных, непрерывно развертывающихся форм ауры и на проблему констант галлюцинаторных форм вообще. Такой новый взгляд был невозможен в то время, когда я писал первоначальный вариант этой книги. Не менее важной стала возможность имитации, а именно создание моделей нейронных сетей, обладающих по меньшей мере некоторыми свойствами реальной мозговой коры. Появилась также возможность с помощью сверхмощных компьютеров визуализировать поведение таких сетей после стимуляции. Мы смогли увидеть, могут ли эти искусственные системы, находясь в состоянии, далеком от равновесного, порождать пространственные и временные паттерны, характерные для ауры. Таким моделированием мы и занимаемся в настоящее время.

Сама природа моделей предполагает упрощение; мы не можем дать модели все, чем обладает настоящая мозговая кора – сотни миллионов клеток двадцати типов, шесть слоев и бесконечное множество внутренних и внешних связей. Но тем не менее мы можем имитировать некоторые свойства и параметры активности – по крайней мере временные (Зигель, 1991). Нейроны коры продуцируют потенциалы действия, возникающие вследствие сложного, зависимого от времени перемещения ионов в клетку и из нее. В самом деле, эти потенциалы действия являются основой функции нейронов – это единственный способ коммуникации между отдельными нейронами. Потенциалы действия распространяются по нейронным сетям не мгновенно – для того чтобы пройти по аксону и преодолеть синапс, импульсу требуется определенное время. Этот временной фактор нельзя игнорировать: мигренозная аура происходит во времени, развертывается во времени и развивается во времени. Аура не состоит из независимых от времени пространственно организованных элементов. Таким образом, несмотря на то что наша модель состоит всего из 400 «нейронов» (расположенных в виде квадрата из 20х20 нейронов) и из единственного, «возбудимого» типа клеток, она все же обладает теми временными свойствами, которые, с точки зрения физиологии, являются важнейшими. В нашей сети возникают потенциалы действия, обладающие свойством временной задержки (то есть требуется определенное время для того, чтобы потенциал перешел с одного нейрона на другой), и в сети есть синапсы, присутствие которых имитирует «функциональную анатомию» цельности, характерной и для реальной коры головного мозга. Все эти параметры можно произвольно и независимо друг от друга менять, как и сами стимулы.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*