Владимир Ганзен - Системные описания в психологии
Осталось проанализировать мышление как отношение. Мышление отражает объективные отношения окружающего нас мира. Это отражение представлено в форме мысли. Мысль, как и образ, находятся в определенном соответствии с объектом. Таким образом, и здесь мы имеем дело с отношением в широком смысле.
На основании изложенного можно утверждать, что определении психологии как науки о субъектно-объектных и субъектно-субъектных отношениях правомочно в своем существовании. Объектом психологии является множество субъектов, предметом - указанные отношения. Одной из проверок жизненности приведенного определения служит установление того факта, что ему удовлетворяют все частные разделы психологии. Если введенное определение психологии жизненно, то объектом любого частного раздела психологии является некоторое подмножество всего множества субъектов, а предметом некоторый частный вид отношений. Если это так, то в основу системы психологической науки должны быть положены отношения между объектами и предметами частных психологических наук.
Оценим с изложенных позиций соотношение между психологией в целом и общей психологией. Их объекты совпадают, и в этом один смысл термина "общая". В общей психологии рассматриваются как субъектно-объектные, так и субъектно-субъектные отношения, но преимущественно первые (вторые составляют предмет социальной психологии, особенно, когда субъект является массовым - группа, коллектив и т. д.). Третья отличительная черта общей психологии состоит в том, что она абстрагируется от индивидуальный особенностей изучаемых отношений и исследует только общие их свойства. В этом заключается второй смысл термина "общая".
Рассмотрим, наконец, опасные психические явление с точки зрения теории множеств. Действительно, имеют место два множества: множество ситуаций, объектов, стимулов, с одной стороны, и множество способов поведения, состояний, оценок - с другой. И всякий раз в ответ на один из элементов первого множества человек выбирает один или несколько элементов второго. На взаимное сочетание элементов этих двух множеств накладываются, таким образом, большие ограничения. А это как рази и соответствует содержательному и формальному определению отношения. Конечно, в зависимости от вида множеств будут меняться и характер отношений, и для отражения психической специфики тех и других психических явлений нужна и психологическая классификация отношений.
II. 1. 3. Отображения. В современной психологии (наряду с собственно психологическими понятиями и терминами) широко используются широконаучные понятия и понятия, первоначально возникшие в рамках других наук. Корректное использование таких понятий, учет специфики психической реальности делают возможным применение "непсихологических" понятий для описания и анализа психических явлений, для установления их связи с явлениями другой природы, для обобщения, систематизации и объединения психологических знаний. Примером могут служить широко употребляемые в психологии понятия "пространство", "поле", "алгоритм", "информация", "регулирование", "модель" и многие другие. Эффективность использования таких понятий в сильной степени зависит от их содержательности, существования точного определения понятия, наличия в психической реальности феноменов, соответствующих содержанию понятия.
Понятие "отображение" и связанные с ним понятия уже давно в разных контекстах используются в психологии и физиологии. Анализ законов биологических и физиологических отображений Н. А. Бернштейн считал одной из важнейших задач науки [13]. Понятие изоморфизма (одного из свойств отображения) широко употреблялось гештальтпсихологами. Рассмотрим более подробно вопрос о применении понятия отображения и связанных с ним понятий в психологи.
В качестве основы воспользуемся математическим определением понятия "отображение". Затем дополним его физическими и собственно психологическими характеристиками. Для определения отображения нужно задать два произвольных непустых множества M и N; правило, закон соответствия элементов этих множеств N=f(M); подмножество C/f/ - область определения функции f; подмножество E/f/ - область значений функции f. Для каждого подмножества A из C/f/ функция f ставит в соответствие некоторое подмножество B из E/f/. Подмножество A называется прообразом, подмножество B - образом A. Конкретный вид отображения будет установлен после выбора всех компонентов приведенного определения.
Соответствие между элементами одного и того же множества называется отображением в себя (преобразованием). Отображения могут быть непрерывными и дискретными, параллельными (одновременными) и последовательными, обратимыми и необратимыми. Преобразователи могут содержать или не содержать память.
При лбом преобразовании имеет место как изменение, так и сохранение определенных свойств исходного множества (прообраза). Основными характеристиками сохранения являются инварианты преобразований. Различные уровни изоморфизма свидетельствуют о степени соответствия между двумя различными множествами (прообразом и образом). При гомоморфных преобразованиях сохраняются отношения однозначности, но уже отсутствует условие взаимности.
Важным случаем преобразований, описываемых абстракциями автоматов и алгоритмов, являются алфавитные отношения. Благодаря наличию памяти такие преобразования не обладают свойством взаимно однозначности. Соотносимыми в этом случае являются множества слов из букв некоторого алфавита. сами преобразования осуществляются последовательно во времени, поэтому их можно использовать для описания не только результата, но и процесса. Одной из важнейших характеристик преобразований являются их ограничения. О них часто бывает мал известно. Только в отдельных случаях мы располагаем соответствующими теоремами. Так, например, ограничения преобразований, производимых конечными автоматами, устанавливаются теоремами Клини.
Преобразования могут объединяться (композиция преобразований). В случаях двух множеств преобразование однократно, при отображении "в себя" оно может может быть повторено многократно. Помимо отдельных преобразований для психологии представляют большой интерес некоторые множества преобразований, в частности, различные группы.
Понятие преобразования тесным образом связано с целым рядом других важных понятий. преобразование является частным случаем отношения. Преобразование и операция - синонимы; они являются как бы "направленными" отношениями. Может быть задана формальная система расширения множества объектов и операций с этими объектами.
Покажем теперь, как общие характеристики отображений - преобразований могут быть использованы для описания и анализа психических отображений.
Отметим специфику психических отображений: двойственность (отображение системы ""я" - среда" и самого процесса отображения), активность (осуществление за счета потенциальной энергии субъекта), опосредованность отображений прошлым и будущим (отображения с памятью), единство чувственного и логического (непрерывно-дискретный характер отображений), кольцевую рефлекторную структуру механизмов отображений, многоуровневость, наличие наряду с информационными механизмами механизмов оценки, а также осознаваемых и неосознаваемых компонентов отображений. Психическое отображение не единственно (одному и тому же прообразу могут соответствовать различные образы). Вследствие многоуровневости один и тот же объект может быть представлен различными формами отображения (образ, понятие). Все психические отображения суть процессы, имеющие свою пространственно-временную структуру. По признаку пространственной локализации оригинала (прообраза) и результата отображения (образа) все психические отображения можно разделить на четыре группы: I - оригинал находится вне субъекта, результат - внутри субъекта (ощущение восприятие); II - оригинал располагается внутри субъекта. результат - вне его (письменная речь, деятельность); III - оригинал и результат оказываются внутри субъекта (представление, мышление); IV - и оригинал и результат находятся вне субъекта (все виды деятельности, в которых человек работает в качестве ретронслятора или преобразователя). Преобразования последней группы осуществляются при помощи трех предыдущих.
По характеру и цели все отображения можно разделить на два больших класса: 1-й - по оригиналу и известному преобразованию получить результат, 2-й - по оригиналу и результату восстановить преобразование.
Понятие группы преобразований используется во многих психологических исследованиях. Их инварианты употребляются как опознавательные признаки и как характеристики психологических шкал. Так, например, при анализе восприятия используется преобразование группы Ли.