Дайана Халперн - Психология критического мышления
Таблица 4.1. Четыре типа рассуждений в условных умозаключениях
Условные суждения в повседневной жизни
Условные умозаключения наряду с линейным упорядочением в неявном виде встречаются в обычных текстах. Конечно, на них нет аккуратных ярлычков с надписями посылка и заключение. Тем не менее, они служат основой для многих распространенных доводов. В контексте повседневных рассуждений часто встречаются ошибки, возникающие из-за отрицания антецедента и утверждения консеквента.
В настоящее время ведутся ожесточенные споры на тему о том, следует ли сообщать учащимся средних и старших классов школы информацию о противозачаточных средствах. Сторонники сообщения такой информации утверждают, что при наличии сведений о противозачаточных средствах учащиеся, живущие половой жизнью, будут действовать ответственно. Формально это означает: если учащиеся получат информацию о контрацептивах, они будут «защищены», вступая в половые отношения. Их противники утверждают, что учащиеся не должны вступать в половые контакты (независимо от наличия или отсутствия «защиты»); поэтому им не следует сообщать информацию о противозачаточных средствах. Это пример ошибки, возникающей при отрицании основания. Из того, что у учащихся не будет информации о контрацептивах, вовсе не следует, что они не будут вступать в половые контакты.
В этой главе неоднократно подчеркивалось, что многие люди не умеют рассуждать в соответствии с законами формальной логики, если их специально этому не обучить. В повседневных (практических) рассуждениях мы пользуемся для определения правильности заключения информацией, которая не была указана в посылках. Мы привлекаем дополнительную информацию, в том числе наши знания о содержании посылок. Эту мысль иллюстрируют следующие два предложения (Braine, 1978):
Если бы в 1940 г. у Гитлера была атомная бомба, он бы выиграл войну
и
Если бы в 1940 г. у Гитлера было на один самолет больше, он бы выиграл войну (р. 19).
Хотя с точки зрения логики люди должны рассуждать одинаково правильно на основе любой из этих посылок и избегать ошибок утверждения консеквента и отрицания антецедента, в действительности большинству людей гораздо легче проводить правильные рассуждения с первым предложением, чем со вторым. Содержание посылок и необъективность, связанная с нашими собственными убеждениями, влияют на то, какие заключения мы готовы принять в качестве правильных в данном случае, так же как при дедуктивных рассуждениях других типов, которые рассматриваются в этой главе. При интерпретации условных умозаключений в бытовом контексте, чтобы решить, следует ли заключение из посылок, мы полагаемся на свои знания о содержании посылок. Согласно законам формальной логики наши рассуждения не должны зависеть от содержания. Все мы должны приходить к одинаковым логически правильным заключениям, независимо от их содержания. Конечно, люди не являются совершенными логическими машинами. Перед тем как принять решение о логической правильности заключения, мы должны определить, истинны ли посылки. (Этот вопрос подробнее рассматривается в главе 5.)
Отрицание
Как было показано в предыдущем разделе, касавшемся линейных рассуждений, использование отрицаний («нет», «не») существенно усложняет задачи, требующие логических рассуждений (Wason, 1969). Эти трудности хорошо иллюстрируют следующие примеры, в которых либо антецедент, либо консеквент содержат отрицание:
Если загорится не зеленый свет, я поеду в Рим.
Неверно, что загорелся не зеленый свет.
Что вы можете заключить, и можно ли вообще что-либо заключить?
Если это буква В, то цифра не 4.
Цифра не 4
Что вы можете заключить, и можно ли вообще что-либо заключить?
В этих примерах трудно разобраться по причине использования отрицания и его утверждением или отрицанием. В первом утверждении отрицается негативный антецедент (не [не зеленый]). Такое суждение называется двойным отрицанием. Вы не можете ничего заключить о консеквенте, если антецедент отрицается, даже если сам этот антецедент был отрицательным. Рассмотрим второй пример. Большинство людей делает неправильный вывод, что во втором примере можно заключить, что «это буква В». Вы должны узнать в этой ситуации пример утверждения консеквента. Если вам трудно было ответить на эти вопросы, начертите соответствующие древовидные диаграммы и ответ «появится» сам собой.
Я однажды слышала, как один политик сделал заявление, похожее на приведенные примеры. Он сказал: «Неверно, что я не поддерживаю этот законопроект». Мне потребовалось несколько секунд, чтобы понять, что он подразумевал, что поддерживает законопроект. Он мог иметь в виду, что относится к законопроекту нейтрально, не одобряя его, но и не выступая против него, но в контексте его выступления я проинтерпретировала его заявление как поддержку законопроекта. Это пример использования контекста для уточнения подразумеваемого значения. Чтобы ясно выражать свои мысли, по возможности избегайте отрицаний.
Тенденция к подтверждению
В последние годы уделяется большое внимание проблеме тенденции к подтверждению (confirmation bias), т.е. склонности искать и использовать информацию, которая поддерживает или подтверждает ваши гипотезы или посылки. Поскольку данная проблема возникает в различных контекстах, в этой книге она обсуждается несколько раз. Так же как тот факт, что наличие отрицания усложняет большинство мыслительных задач, склонность искать подтверждающие свидетельства, вероятно, является одним из распространенных когнитивных предубеждений. (Обсуждение этих вопросов см. в главах 6 и 8.)
Продемонстрируйте для себя это явление (Johnson-Laird amp; Wason, 1970): перед вами на столе лежат четыре карточки. На одной стороне каждой из них написана буква, а на другой стороне - цифра. Ваша задача заключается в том, чтобы проверить выполнение следующего правила: «Если на одной стороне карточки гласная, то на другой ее стороне - четное число». Какую карточку или карточки вы должны перевернуть, чтобы выяснить, выполняется ли указанное правило? Вы можете перевернуть лишь минимально необходимое для проверки выполнения правила количество карточек. Остановитесь, пожалуйста, и изучите изображенные ниже карточки, чтобы решить, какие из них вам потребуется перевернуть. Не продолжайте чтение, пока не решите, какие карточки вы хотите перевернуть.
Немногие люди правильно выбирают карточки в этой задаче, которая известна под названием задача выбора из четырех карточек. Эта задача хорошо изучена и часто приводится в литературе по когнитивной психологии. Большинство людей отвечает, что надо перевернуть «только карточку Л» или «карточки А и 4». Правильный ответ - карточки А и 7. Вы можете разобраться, почему это так?
Лучший способ решить эту логическую задачу - нарисовать древовидную диаграмму, соответствующую утверждению «Если на одной стороне карточки гласная, то на другой ее стороне - четное число». Она будет выглядеть следующим образом:
Если на оборотной стороне карточки с буквой А нечетное число, то правило не выполняется. Точно так же, если на оборотной стороне карточки с числом 7 написана гласная, то правило не выполняется. А как поступить с карточками D и 4? Буква D обозначает согласный звук. Поскольку в правиле ничего не сказано о согласных, то не имеет значения, четное или нечетное число написано на обороте этой карточки. Поскольку 4 - четное число, то неважно, гласная или согласная написана на обороте этой карточки. Причина затруднений, которые вызывает эта задача, заключается в том, что люди интерпретируют правило таким образом, будто оно означает также и второе утверждение: «Если на одной стороне карточки не гласная, то на другой ее стороне нет четного числа», или, если убрать отрицания, «Если на одной стороне карточки согласная, то на другой ее стороне - нечетное число». Такая альтернативная интерпретация является неправильной. Узнали ли вы тип ошибки - отрицание антецедента? Этот результат имеет устойчивый характер. Повышенная сложность данной задачи связана с тем, что в ней решающую роль играет опровержение гипотезы. Люди не понимают важности разработки стратегии опровержения. Другими словами, нам надо думать о способах, с помощью которых можно показать, что гипотеза может быть ложной, вместо того чтобы искать подтверждения ее истинности. Ситуация усугубляется, если делается еще и ошибочное предположение о том, что обратное правило также верно. Единственным способом правильного решения задачи является выбор только тех карточек, для которых правило может не выполняться.