KnigaRead.com/

Стивен Вайнберг - Первые три минуты

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Стивен Вайнберг, "Первые три минуты" бесплатно, без регистрации.
Перейти на страницу:

Та картина Вселенной, которую мы здесь описываем, представляет собой расширяющийся рой галактик. До сих пор свет играл для нас лишь роль «звездного посланца», несущего информацию о галактических расстояниях и скоростях. Однако в ранней Вселенной были совсем другие условия; как мы увидим, именно свет был главной составной частью Вселенной, а обычное вещество играло роль пренебрежимо малой примеси. Поэтому позднее нам пригодится, если сейчас мы повторим, что мы узнали о красном смещении в терминах поведения световых волн в расширяющейся Вселенной.

Рассмотрим световую волну, распространяющуюся между двумя типичными галактиками. Расстояние между галактиками равно времени распространения света, умноженному на скорость света, а увеличение этого расстояния за время путешествия света равно времени распространения света, умноженному на относительную скорость галактик. Когда мы вычисляем относительный рост взаимного расстояния, мы делим увеличение расстояния на среднее значение этого расстояния за время увеличения и находим, что при этом время распространения света сокращается: относительное увеличение расстояния между этими двумя галактиками (а следовательно, между любыми другими типичными галактиками) за время распространения света есть просто отношение относительной скорости галактик к скорости света. Но как мы видели раньше, это же отношение определяет относительное увеличение длины волны света за время его путешествия. Таким образом, в процессе расширения Вселенной длина волны любого луча света просто увеличивается пропорционально взаимному расстоянию между типичными галактиками. Можно представлять себе это так, будто гребни волн в процессе расширения Вселенной все дальше и дальше «растаскиваются» друг от друга. Хотя, строго говоря, наша аргументация справедлива только для малого времени распространения, но, соединяя последовательность таких небольших путешествий в одно целое, мы вправе заключить, что вывод верен и в общем случае. Например, когда мы смотрим на галактику ЗС295 и обнаруживаем, что длины волн в ее спектре на 46 процентов больше, чем в наших стандартных таблицах спектральных линий, мы можем заключить, что Вселенная сейчас на 46 процентов больше по размеру, чем она была тогда, когда свет покинул ЗС295.

До этого момента мы сосредоточивали внимание на вопросах, которые физики называют кинематическими и которые связаны с описанием движения без какого-либо рассмотрения сил, управляющих этим движением. Однако в течение столетий физики и астрономы пытались понять динамику Вселенной. Неизбежно это привело к изучению космологической роли той единственной силы, которая действует между астрономическим телами, — силы тяготения.

Как и следовало ожидать, первым, кто вступил в схватку с этой проблемой, был Исаак Ньютон. В знаменитой переписке с кембриджским филологом Ричардом Бентли Ньютон утверждал, что если бы материя Вселенной была равномерно распределена в конечной области, то она вся должна была бы стремиться упасть к центру «и в результате образовалась бы одна большая сферическая масса». Напротив, если бы материя была равномерно рассеяна в бесконечном пространстве, то не было бы центра, к которому она могла бы падать. В этом случае материя могла бы соединяться в бесконечное число сгустков, рассеянных по Вселенной; Ньютон предположил, что именно это могло быть причиной происхождения Солнца и звезд.

Трудность рассмотрения вопросов динамики бесконечной среды[11] в значительной степени парализовала дальнейший прогресс вплоть до появления общей теории относительности. Здесь не место объяснять эту теорию, во всяком случае, оказалось, что она менее важна для космологии, чем думали первоначально. Достаточно сказать, что Альберт Эйнштейн использовал существующую математическую теорию неевклидовой геометрии для того, чтобы объяснить тяготение как эффект искривления пространства и времени. В 1917 году, через год после завершения общей теории относительности, Эйнштейн попытался найти решение своих уравнений, которое описывало бы пространственно-временную геометрию Вселенной в целом. Следуя имевшим тогда хождение космологическим идеям, Эйнштейн специально искал решение, которое было бы однородным, изотропным и, к сожалению, статичным. Однако такого решения найти не удалось. Чтобы построить модель, удовлетворявшую указанным предварительным космологическим требованиям, Эйнштейн вынужден был «изуродовать» свои уравнения введением члена, так называемой космологической постоянной, который сильно портил элегантность первоначальной теории, но мог служить для уравновешивания силы гравитационного притяжения на больших расстояниях.

Эйнштейновская модель Вселенной была совершенно статичной и предсказывала отсутствие красных смещений. В том же 1917 году голландский астроном де Ситтер нашел другое решение модифицированной теории Эйнштейна. Хотя это решение было тоже статичным и потому приемлемым в соответствии с тогдашними космологическими идеями, его примечательной особенностью было предсказание красного смещения, пропорционального расстоянию! Европейские астрономы не знали тогда о существовании значительных красных смещений у туманностей. Однако в конце первой мировой войны новости из Америки о наблюдении больших красных смещений достигли Европы, и модель де Ситтера немедленно приобрела широкую известность. Действительно, в 1922 году, когда английский астроном Артур Эддингтон написал первую исчерпывающую книгу по общей теории относительности, он проанализировал существовавшие данные по красным смещениям, пользуясь моделью де Ситтера. Сам Хаббл говорил, что именно модель де Ситтера привлекла внимание астрономов к важности определения зависимости красных смещений от расстояния и, может быть, эту модель держал он в глубине своего сознания, когда обнаружил в 1929 году пропорциональность красных смещений расстоянию.

В наши дни такой упор на модель де Ситтера представляется неоправданным. С одной стороны, это на самом деле вообще не статическая модель — она кажется статической благодаря своеобразному способу введения пространственных координат, но расстояние между «типичными» наблюдателями в этой модели реально растет со временем, и именно это общее разбегание обусловливает красные смещения. С другой стороны, причина того, почему в модели де Ситтера красное смещение оказалось пропорциональным расстоянию, заключается просто в том, что эта модель удовлетворяет Космологическому Принципу, а, как мы видели, в любой теории, удовлетворяющей этому принципу, следует ожидать пропорциональности относительной скорости и расстояния.

Во всяком случае, открытие разбегания далеких галактик вскоре повысило интерес к космологическим моделям, которые были однородны и изотропны, но нестатичны. Космологическая постоянная оказалась поэтому уже ненужной в уравнениях гравитационного поля, и Эйнштейн даже выразил сожаление, что он вообще рассматривал подобное изменение своих исходных уравнений. В 1922 году советским математиком Александром Фридманом было найдено общее однородное и изотропное решение первоначальных уравнений Эйнштейна[12]. Именно эти фридмановские модели, основанные на исходных уравнениях поля Эйнштейна, а не модели Эйнштейна и де Ситтера, обеспечили математический фундамент большинству современных космологических теорий.

Существует два разных типа моделей Фридмана.

Если средняя плотность материи во Вселенной меньше некоторой критической величины или равна ей, то тогда Вселенная должна быть пространственно бесконечной. В этом случае современное расширение Вселенной будет продолжаться всегда.

В то же время, если плотность материи во Вселенной больше той же критической величины, тогда гравитационное поле, порожденное материей, искривляет Вселенную, замыкая ее на себя; Вселенная в этом случае конечна, хотя и неограничена, вроде поверхности сферы. (Это означает, что если мы отправимся в путешествие по прямой линии[13], мы не сможем добраться до какого-то угла Вселенной, а просто вернемся туда, откуда начали свой путь). Гравитационные поля достаточно сильны для того, чтобы в конце концов остановить расширение Вселенной, так что рано или поздно она начнет снова сжиматься к состоянию бесконечно большой плотности.

Критическая плотность пропорциональна квадрату постоянной Хаббла; для принятого в настоящее время значения этой постоянной (15 км/с на миллион световых лет) критическая плотность составляет 5 × 10-30 грамм на кубический сантиметр, или около трех атомов водорода на тысячу литров объема пространства.

Движение любой типичной галактики в моделях Фридмана в точности напоминает движение камня, подброшенного вверх с поверхности Земли. Если камень брошен с достаточно большой скоростью или, что приводит к тому же результату, если масса Земли достаточно мала, то камень будет постоянно замедляться, но, тем не менее, сможет улететь в бесконечность. Это соответствует случаю, когда космическая плотность меньше критической плотности. Напротив, если камень подброшен с недостаточно большой скоростью, то он достигнет некоторой максимальной высоты, а затем полетит обратно вниз. Это соответствует космической плотности больше критической.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*