Мичио Каку - Параллельные миры
В настоящее время большинство физиков считает, что путешествие сквозь черную дыру стало бы фатальным. Однако наше понимание физики черных дыр находится еще в младенческой стадии, и такое предположение до сих пор не было проверено. Представим, в качестве обратного аргумента, что путешествие через черную дыру и в особенности через вращающуюся черную дыру Керра возможно.
В таком случае любая высокоразвитая цивилизация серьезно задумалась бы об исследовании внутренней части черных дыр.
Поскольку путешествие через черную дыру стало бы путешествием в один конец, а также в силу неимоверных опасностей вблизи черной дыры, вполне вероятно, что высокоразвитая цивилизация попыталась бы определить местонахождение ближайшей звездной черной дыры и сначала отправила зонд для ее исследования. Ценная информация могла бы быть отправлена с зонда еще до пересечения им горизонта событий и потери связи. (Путешествие за горизонт событий, скорее всего, окажется смертельным из-за жесткого радиационного поля, окружающего его. Лучи света, падающие на черную дыру, приобретают синее смещение и потому при приближении к центру будут обладать большей энергией.) Любой зонд, проходящий рядом с горизонтом событий, должен быть снабжен соответствующей защитой против этого барьера жесткой радиации. Кроме того, это может дестабилизировать саму черную дыру и горизонт событий превратится в сингулярность, тем самым закрывая портал. Зонд определил бы точный уровень радиации вблизи горизонта событий, а также то, может ли портал-червоточина оставаться стабильным, несмотря на весь этот поток энергии.
До момента пересечения зондом горизонта событий он должен передать собранные им данные на расположенные неподалеку космические корабли, но тут кроется еще одна проблема. Наблюдателю на каком-то из этих космических кораблей казалось бы, что зонд замедляется во времени при приближении к горизонту событий, после пересечения которого он, в сущности, казался бы застывшим во времени. Чтобы избежать этой проблемы, зондам необходимо было бы передать собранную информацию еще на каком-то расстоянии от горизонта событий, иначе радиосигналы были бы настолько искажены красным смещением, что прочесть данные было бы невозможно.
Шаг четвертый: построить медленно движущуюся черную дыруПосле того как при помощи зондов удастся определить параметры у горизонта событий черных дыр, следующим шагом могло бы стать создание медленно движущейся черной дыры для экспериментальных целей. Цивилизация третьего типа могла бы попытаться воспроизвести результаты, полученные Эйнштейном, — а именно, что черные дыры не могут образоваться из кружащейся массы пыли и частиц, — и воспользоваться ими.
Эйнштейн пытался показать, что скопление вращающихся частиц не сможет достичь радиуса Шварцшильда само по себе (а потому существование черных дыр невозможно). Сами по себе кружащиеся массы могут и не сжаться в черную дыру, однако остается возможность (не забудем, что речь идет о цивилизации типа III) искусственного медленного вливания новой энергии и вещества во вращающуюся систему, что заставит массы постепенно сжаться и пересечь радиус Шварцшильда. Таким способом цивилизация могла бы управлять процессом образования черной дыры.
Например, можно представить, что цивилизация третьего типа соберет нейтронные звезды размером с Манхэттен, а массой с наше Солнце и образует вращающееся скопление этих мертвых звезд. Постепенно звезды притянутся друг к другу. Однако, как показал Эйнштейн, они никогда не пересекут радиус Шварцшильда. В этот момент ученые этой высокоразвитой цивилизации могут осторожно добавить новые нейтронные звезды в это скопление. Этого может оказаться достаточно, чтобы нарушить баланс, что вынудит эту вращающуюся массу нейтронного вещества сжаться до размеров меньше радиуса Шварцшильда. В результате этого скопление звезд сожмется во вращающееся кольцо, черную дыру Керра. Управляя скоростью и радиусами различных нейтронных звезд, такая цивилизация могла бы заставить черную дыру Керра вращаться настолько медленно, насколько она пожелает.
Или же высокоразвитая цивилизация могла бы попытаться собрать небольшие нейтронные звезды в единое неподвижное скопление, масса которого превысила бы три солнечных, что приблизительно составляет предел Чандрасекара для нейтронных звезд. Перейдя этот предел, звезда взорвется под воздействием собственной гравитации. (Высокоразвитой цивилизации придется быть очень осторожной, чтобы в процессе создания черной дыры не произошел взрыв сверхновой. Сжатие черной дыры должно будет осуществляться постепенно и с высокой точностью.)
Конечно же, для любого, кто пересечет горизонт событий, это гарантированно станет путешествием в один конец. Но для высокоразвитой цивилизации, столкнувшейся с угрозой неминуемого вымирания, путешествие в один конец может оказаться единственным выходом. Кроме того, при пересечении горизонта событий все еще остается проблема радиации. Световые лучи, следующие за нами за горизонт событий, набирают все больше энергии, и частота их все увеличивается. Весьма вероятно, что это вызвало бы радиационный дождь, который оказался бы смертельным для любого астронавта, прошедшего за горизонт событий. Любой высокоразвитой цивилизации придется вычислить точный уровень этой радиации и создать соответствующую защиту, чтобы не оказаться зажаренными.
И наконец, есть проблема стабильности: будет ли портал в центре Керрова кольца достаточно стабилен, чтобы можно было совершить полный переход? Математика данного вопроса не совсем ясна, поскольку для совершения правильного подсчета нам пришлось бы обратиться к квантовой теории гравитации. Может оказаться, что Керрово кольцо сохраняет стабильность лишь в весьма жестком диапазоне параметров при падении вещества в черную дыру. Этот вопрос требует внимательного рассмотрения при помощи математики квантовой гравитации и экспериментов на самой черной дыре.
В целом, переход через черную дыру несомненно окажется очень трудным и опасным путешествием. Теоретически нельзя исключать такую возможность до того, как будут проведены всесторонние эксперименты и выполнен правильный расчет всех квантовых поправок.
Шаг пятый: создание дочерней вселеннойИтак, до сих пор мы предполагали, что проход сквозь черную дыру возможен. Теперь давайте выдвинем обратное предположение: что черные дыры нестабильны, а уровень смертоносной радиации будет слишком высок. В таком случае можно будет попытаться пойти по еще более трудному пути — создать дочернюю вселенную. Концепция высокоразвитой вселенной, создающей люк аварийного выхода в другую цивилизацию, заинтриговала такого физика, как Алан Гут. Поскольку теория инфляционного расширения в столь значительной мере основывается на создании ложного вакуума, Гут задался вопросом: сможет ли высокоразвитая цивилизация искусственно создать ложный вакуум и сотворить дочернюю вселенную в лаборатории.
На первый взгляд сама идея создания вселенной кажется абсурдной. В конце концов, как указывает Гут, для создания вселенной потребовались бы фотоны, электроны, позитроны, нейтрино, антинейтрино, протоны и нейтроны — каждая частица в количестве 1089 штук. Хотя задача на первый взгляд, выглядит нереальной, Гут напоминает нам, что, несмотря на то, что вещественно-энергетическое содержание вселенной довольно велико, оно уравновешено отрицательной энергией гравитации. Общее количество вещества/ энергии может равняться и одной унции (28,3 граммам. — Прим. перге.). Гут предостерегает: «Означает ли это, что законы физики действительно позволяют нам создать новую вселенную по своей воле? Если бы мы попытались выполнить этот рецепт, то, к несчастью, столкнулись бы с досадным препятствием: поскольку сфера ложного вакуума диаметром в 10"26 сантиметров обладает массой в одну унцию, ее плотность просто феноменальна и составляет 1080 граммов на кубический сантиметр!.. Если массу всей видимой вселенной сжать до плотности ложного вакуума, то размером она будут меньше атома!» Ложный вакуум был бы малой областью пространства-времени, где возникшая нестабильность привела к разрыву континуума. Для создания дочерней вселенной может понадобиться всего лишь несколько унций вещества в условиях ложного вакуума, но это небольшое количество вещества нужно сжать до фантастически малых размеров.
Могут быть и другие способы создания дочерней вселенной. Один из них состоит в разогревании малой области пространства до 1029 градусов Кельвина, а затем стремительном ее охлаждении. Предполагается, что при такой температуре пространство-время становится нестабильным; может начаться формирование крошечных пузырьков-вселенных и, возможно, образуется ложный вакуум. При такой температуре крошечные вселенные, которые непрерывно образуются и «лопаются», могут стать настоящими вселенными. Это явление уже знакомо по обычным электрическим полям. (Например, если мы создадим достаточно сильное электрическое поле, виртуальные пары электронов и позитронов, постоянно появляющихся и исчезающих в вакууме, могут внезапно стать реальными, появившись словно бы ниоткуда. Таким образом, концентрация энергии в пустом пространстве может трансформировать виртуальные частицы в реальные. Подобным образом, если направить в одну точку достаточную энергию, очень может быть, виртуальные дочерние вселенные станут реальными, появившись словно бы ниоткуда.)