KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Марк Мосевицкий - Распространенность жизни и уникальность разума?

Марк Мосевицкий - Распространенность жизни и уникальность разума?

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Марк Мосевицкий, "Распространенность жизни и уникальность разума?" бесплатно, без регистрации.
Перейти на страницу:

Несколько позже было обращено внимание на атмосферу Земли как еще один резервуар, в котором могли осуществляться не только ранние органические синтезы, но и сложные процессы предбиотической эволюции (Woese, 1979; Oberbeck et al. 1991). В атмосфере в большей степени, чем в других резервуарах, были доступны все упоминавшиеся выше источники энергии: электрические разряды, тепло, исходящее от Солнца, а также от раскаленной поверхности Земли, ионизирующее и ультрафиолетовое излучения, поступающие из космоса, главным образом от Солнца. Вулканические извержения и метеоритные взрывы пополняли атмосферу газами, влагой, распыленными минералами. Кроме того, как уже обсуждалось выше, значительное количество минеральной пыли и реакционно-способной органики поступало в атмосферу из космоса. На достаточном удалении от поверхности устанавливался благоприятный режим для органических синтезов и других эволюционно значимых взаимодействий. Восходящие потоки тепла и газов поддерживали взвешенные частицы и капли влаги на удалении от поверхности. Реакционно-способные соединения, синтезированные из газов, и органические молекулы, проникающие в атмосферу из космоса, скапливались в капельках влаги, размеры которых не были постоянными. Перемещаясь в нисходящих и восходящих потоках, они могли уменьшиться вплоть до полного высыхания, когда оказывались в нижних (горячих) или в верхних сильно разреженных слоях атмосферы, а затем, вернувшись в насыщенные влагой слои, вновь увеличивались в размерах, обогащались реагентами, в том числе аминокислотами, и цикл повторялся. Эти метаморфозы могли иметь принципиальное значение. При вызванном испарением уменьшении размеров капель содержавшиеся в них вещества концентрировались в десятки и сотни раз. Благодаря этому существенно ускорялись синтетические процессы. Присутствовавшие в каплях пылинки металлов, глин и других минералов не только предоставляли твердую поверхность для ориентированной сорбции реагентов, но благодаря выходу на поверхность определенных, в том числе заряженных, групп оказывались способными катализировать происходящие на их поверхности реакции (Бернал, 1969; Wachtershauser, 1988, 1994; de Duve and Miller, 1991). Важно отметить, что в условиях поверхностной сорбции могли быть осуществлены важнейшие процессы, практически невозможные в чисто водной среде. В первую очередь, это относится к образованию пептидных связей, соединяющих аминокислоты в цепочку, образующую белок (пептид), и фосфоэфирных связей, которые, возможно, формировали ранние автореплицирующиеся молекулы. Большое значение для прогресса доклеточной эволюции могли иметь акты дробления-слияния капель, внешне напоминающие акты деления-слияния клеток, когда осуществляется перераспределение материала, возрастает многообразие синтетических процессов и, соответственно, их продуктов. Если реакции синтеза преобладали над деструкцией, атмосфера обогащалась все более сложной, в том числе полимерной, органикой, сгруппированной в разнообразные комплексы на поверхности пылевых частиц. Очевидно, что достаточно прочная сорбция на поверхностях, выполнявших функции концентратора и катализатора, могла происходить только при умеренной температуре. На этом основании Бада и Лазкано выступили против широко распространившихся представлений о зарождении жизни вблизи придонных горячих источников и вулканов (Bada and Lazcano, 2002). Однако необходимые для зарождения жизни процессы могли осуществляться на некотором удалении от источников тепла (см. Borgeson et al., 2002).

Около 3.9 млрд лет тому назад, когда затвердела кора и температура поверхности стала ниже 100 °C, значительная часть атмосферной влаги пролилась ливнями, заполнив океанические выемки. Вместе с водой в океаны и на поверхность переместилась синтезированная в атмосфере органика. Эта органика вместе с органикой, поступавшей непосредственно из космоса, явилась как бы затравкой для процессов, продолжившихся на окончательно застывшей поверхности Земли и в уже не подвергавшихся тотальному испарению океанах. Предположение о существовании в периоды глобального плавления земной коры ниш, в которых сохранялась возможность продолжения и развития эволюционных процессов, позволяет увеличить допустимый срок доклеточной эволюции на Земле до 500 млн лет. Такой срок предполагает, что эволюционный процесс мог быть инициирован еще в период формирования Солнечной системы и с тех пор никогда не прерывался. В связи с этим отметим еще одну достаточно изящную гипотезу сбережения земной жизни на период, когда обрушившийся на планету метеоритный ливень плавил кору и испарял океан: клетки и их споры могли сохраниться в материале, выброшенном в космос при импактах (Gladman et al., 2005). Расчеты показали, что значительное количество этого грунта, в итоге, возвращается на Землю, причем пребывание в космосе какой-то его части может оказаться достаточно длительным для того, чтобы замурованные в грунте клетки вернулись на Землю уже после восстановления на ней совместных с жизнью условий.

2.5. Возможные пути предклеточной эволюции

Было бы большим упрощением полагать, что описанная выше химическая эволюция, в ходе которой накапливались все более сложные органические соединения, непосредственно предшествовала клеточной эволюции, т. е. появлению жизни. На самом деле следует выделить предклеточный этап эволюции, в ходе которого формировались квазиживые комплексы.

В этих комплексах главным компонентом были полимерные молекулы, способные к воспроизводству путем авторепликации (Paul and Joyce, 2004). Известные нам автореплицирующиеся молекулы воспроизводятся не непосредственно, а через комплементарную (структурно дополнительную) реплику, т. к. комплементарные звенья взаимодействуют значительно более эффективно, чем идентичные (принцип комплементарного узнавания). При комплементарном синтезе к концу растущей цепи подключается мономер, несущий матричный элемент, комплементарный матричному элементу соответствующего звена родительской цепи, играющей роль полимерной матрицы. Новые цепи однозначно соответствуют родительским цепям, но не идентичны, а комплементарны им. Только при следующем раунде репликации, при котором в качестве матриц выступают комплементарные элементы дочерней цепи, воспроизводится комплементарная комплементарной, т. е. исходная последовательность звеньев, после чего цикл повторяется вновь и вновь. В современных клетках принцип комплементарного узнавания используется при репликации нуклеиновых кислот: молекул дезоксирибонуклеиновой кислоты (ДНК) и рибонуклеиновой кислоты (РНК) (Бреслер, 1963; Албертс и др., 1994). При этом автореплицирующимися являются молекулы ДНК, а все типы клеточной РНК синтезируются по ДНК (исключение составляют автореплицирующиеся РНК вирусов). Только у вирусов имеет также место обратный процесс: синтез ДНК по РНК. Матричными элементами в звеньях нуклеиновых кислот служат азотистые основания, принадлежащие классу гетероциклических соединений. За небольшими исключениями в современной живой природе используются две пары комплементарных друг другу оснований: гуанин — цитозин и аденин — урацил (в ДНК, как правило, вместо урацила используется тимин).

Однако представляется маловероятным, что ранними самовоспроизводящимися структурами были молекулы ДНК или РНК. В модельных экспериментах среди продуктов органических синтезов сахар рибоза встречается значительно реже других сахаров (Shapiro, 1984, 1988), и тем более редки нуклеозиды с “правильным” подключением к рибозе азотистого основания (в первом положении). С другой стороны, непосредственные объекты комлементарного узнавания, азотистые основания, вполне могли накапливаться в ходе органических синтезов в ранней атмосфере Земли. Уже в первых модельных экспериментах было показано, что аденин, а также другие пурины могут быть получены из циановодородной кислоты (HCN) (Oro, 1961; Ferris and Hagan, 1984; Borquez, 2005). Также присутствовавший в ранней атмосфере Земли цианоацетилен мог послужить исходным продуктом для образования пиримидинов цитозина и урацила (Miller 1986; Ferris and Hagan, 1984). Несмотря на то, что высказано сомнение в реальности пребиотического синтеза цитозина (Shapiro, 1999), многие авторы сходятся во мнении, что азотистые основания с самого начала входили в состав мономеров, из которых формировались цепные молекулы, обеспечивая авторепликацию этих молекул по принципу комплементарного узнавания. Последовательности азотистых оснований в автореплицирующихся молекулах, как и ныне, служили для записи и сохранения наследственной информации. Принято считать также, что звенья были ациклическими и ахиральными (не обладавшими оптической активностью) аналогами нуклеотидов. Однако нет единого мнения о возможной структуре скелетной части звеньев и, соответственно, о природе связей, объединяющих их в цепной молекуле. В настоящее время рассматриваются две основные концепции. Согласно одной из них, в ранних автореплицирующихся молекулах звенья соединялись, как и в нуклеиновых кислотах, фосфодиэфирными связями. Они могли быть сконструированы на основе гликоля, акролеина и других молекул, которые можно рассматривать как ациклические предшественники рибозы (Joyce and Schwartz, 1987; Schwartz, 1997; Zhang et al., 2005). Согласно другой концепции, звенья соединялись амидной связью подобно аминокислотам в белке. Мономерами в этом случае служили аминокислоты, у которых в качестве боковых групп были азотистые основания. Полимерные молекулы этого типа получили название пептид-нуклеиновых кислот (peptide nucleic acid, PNA). Их можно было бы также назвать “информационные пептиды”. Такие молекулы получены в лаборатории (Nielsen et al. 1991; Nelson et al., 2000; Fader and Trantrizos, 2002), что свидетельствует о реальности их синтеза в ходе химической эволюции. Матричный синтез цепи ПНК по комплементарной ПНК также осуществлен экспериментально. Более того, оказалось, что в качестве комплементарной матрицы при синтезе ПНК можно использовать цепь РНК и, наоборот, РНК может быть синтезирована по ПНК (Bohler et al. 1995). Последний факт представляется весьма существенным для эволюции. Он показывает, что при переходе по мере развития клеточных синтезов от простейших автореплицирующихся молекул к более совершенным структурам могла иметь место преемственность генетических свойств, информация о которых зашифрована в последовательности азотистых оснований. Аналогичными свойствами обладают также гликоль-нуклеиновые кислоты (Zhang et al., 2005). Мы не знаем, какой именно вариант структуры автореплицирующихся молекул был реализован при зарождении жизни. Возможно, параллельно функционировали несколько таких структур (Wu and Orgel, 1991). Главное, что упомянутые выше автореплицирующиеся структуры действительно могли возникнуть в ходе химической эволюции.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*