Коллектив авторов - Океанография и морской лед
Рис. 5. Схема (а) и процесс установки (б) элементов комплекса ITP
Начиная с 2006 года и по настоящее время на дрейфующих льдах Арктического бассейна ежегодно выставляется от трёх до двенадцати буёв ITP, а всего за рассматриваемый период в Арктике было задействовано тридцать восемь комплексов. Общее количество полученных профилей оценивается в тридцать тысяч.
На рис. 6 с цветовой дифференциацией по годам представлены пункты акватории Арктического бассейна, в которых было выполнено профилирование комплексами ITP. Как видно, наибольшая концентрация точек профилирования достигнута в акватории моря Бофорта, в соответствии с первоначальными целями проекта. Однако и в центральной части Арктического бассейна были задействованы двенадцать буёв ITP, в том числе в период МПГ в рамках российских арктических экспедиций на НЭС «Академик Федоров» были установлены в 2007 году пять комплексов, в 2008 году – 4 комплекса ITP.
Рис. 6. Положение пунктов в Арктическом бассейне СЛО, в которых с буев ITP выполнялось профилирование в период 2004–2010 гг.
Дрейфующие комплексы ITP являются автономными платформами, обеспечивающими регулярное поступление оперативной океанографической информации в течение всего года. Поздние модификации буёв выполняют термохалинное профилирование до шести раз в сутки. Наличие приёмника GPS позволяет рассматривать комплекс как источник информации высокого временного разрешения о характере дрейфа морского льда в месте нахождения буя. В случаях удачного выбора района постановки, когда льдина-носитель оказывается вовлечённой в продолжительный дрейф и в течение долгого времени не разрушается и не выносится из Арктического бассейна, комплекс ITP несколько лет может служить поставщиком океанографических данных (рис. 7).
Рис. 7. Пример записи изменений вертикального профиля температуры в приполюсном районе по данным ITP-буя № 14 в период с 13 сентября по 5 ноября 2007 г.
Накопленный опыт использования ITP позволил выявить и устранить ряд технологических недостатков, оптимальным образом реализовать заложенные на этапе проектирования комплекса идеи. Таким образом, можно считать, что наиболее затратный в экономическом отношении период опытной эксплуатации преодолён. Стоимость производства и развёртывания комплекса невелика в сравнении с затратами на организацию океанографических наблюдений с других платформ, таких как научно-исследовательские суда и дрейфующие станции. Конечно, ITP не обеспечивает комплексную регистрацию дополнительных параметров, характеризующих состояние снежно-ледяного покрова и атмосферы. Этот недостаток может быть устранён путём использования ITP в составе автономных дрейфующих обсерваторий, включающих также автоматические метеостанции, балансомерные ледовые буи и другое измерительное оборудование. Ввиду особенностей конструкции, обусловленных необходимостью адаптации комплекса к усреднённым характеристикам ледяного покрова и батиметрическим условиям на целевой акватории, ITP не может получать информацию о поверхностном слое воды до глубины 5–7 метров и выходить на мелководные участки Арктического бассейна. Тем не менее, с помощью ITP-комплексов может осуществляться мониторинг пространственного расположения струи Атлантических вод и термохалинных характеристик в их ядре. Поскольку совокупность перечисленных параметров определяет один из основных климатообразующих факторов арктического региона, дальнейшее развитие программы ITP на всей глубоководной части акватории СЛО представляется перспективным направлением научных исследований в Арктике.
ЗаключениеПодводя итог обзора автономных измерительных комплексов можно отметить, что если заякоренные комплексы нацелены в основном на изучение гидрологических процессов, то задачам мониторинга гидрофизического состояния СЛО в большей степени отвечают дрейфующие буйковые станции. Современные модификации дрейфующих комплексов позволяют осуществлять их постановку как на открытую воду, так и на дрейфующий лед. Наряду с этим надежность разработанных и уже используемых комплексов доказывает высокую экономическую эффективность их дальнейшего использования в Арктике вне зависимости от направленности климатических изменений и состояния ледяного покрова. Кроме этого дрейфующие буйковые станции являются единственными автономными платформами, обеспечивающими оперативное поступление океанографической информации в течение круглого года. В экономическом отношении они значительно выигрывают у дрейфующих ледовых станций, организация, обеспечение и эвакуация которых приводит к высоким финансовым затратам.
S.A. Kirillov[8], K.V. Filchuk[9]. The anchored and drifted observational platforms for continuous registration of seawater parameters in the Arctic OceanАbstract
The anchored and drifted observational platforms are considered as the main autonomous techniques which gains information on hydrophysical state of the Arctic Ocean. The advantages and disadvantages of both methods are discussed along with the perspectives of their further using for the observational network in the Arctic.
Е.В. Блошкина[10], А.К. Платонов[11], Н.А. Куссе-Тюз[12], В.И. Дымов[13], Т. А. Пасечник[14], В.В. Алексеев[15]
Возможности и перспективы мониторинга и изучения гидрологических условий Северного Ледовитого океана по данным спутниковых измерений
Статья посвящена возможностям использования спутниковой информации для мониторинга и изучения гидрологических условий Северного Ледовитого океана и его морей. Приводятся основные технические характеристики некоторых космических спутников и аппаратов дистанционного зондирования Земли. Рассматриваются особенности космического зондирования для определения температуры поверхности океана и уровня моря. Обсуждается вопрос использования спутниковой альтиметрической информации для верификации моделей ветрового волнения и её усвоение (ассимиляция) моделями ветрового волнения в оперативной практике. На конкретном примере показывается, что спутниковые данные по морскому волнению не всегда подходят для оперативной ассимиляции. Наблюдения за проявлениями на поверхности моря сложных динамических метеорологических и океанографических явлений, пятен поверхностных загрязнений позволяют проводить радиолокаторы с синтезированной апертурой, установленные на борту космических спутников.
ВведениеРезультаты анализа изменений гидрометеорологических процессов различных пространственно-временных масштабов, наблюдающихся в последние десятилетия в Арктическом бассейне Северного Ледовитого океана (СЛО), позволяют судить о современном состоянии и дальнейшем развитии глобальной климатической системы. Данных, получаемых различными контактными методами для изучения этих изменений, недостаточно. В связи с этим, важной задачей современных полярных исследований является применение спутниковой информации для мониторинга различных гидрологических характеристик и ее использование в прогностических и диагностических моделях. Основными преимуществами данных дистанционного зондирования (ДДЗ) над контактными методами является их относительная доступность, оперативность, высокое пространственное и временное разрешение. К факторам, затрудняющим применение части ДДЗ в Арктическом бассейне, можно отнести сезонные ограничения, связанные с распределением ледяного покрова и освещённостью поверхности моря, а также частым экранным эффектом облачности.
Температура поверхности океанаОдним из важнейших гидрологических параметров является температура воды. На сегодняшнем этапе развития космической океанологии спутниковые методы позволяют получать только данные распределения температуры поверхности океана (ТПО). Но уже сейчас существуют модели, позволяющие на основе данных дистанционного зондирования рассчитывать вертикальное распределение этой характеристики.
Первый спутник серии TIROS-N агентства NOAA, несущий на себе радиометр AVHRR, измеряющий ТПО в инфракрасном (ИК) диапазоне, был запущен еще в 1978 году [http://ngdc.noaa.gov]. Наиболее широкое использование методов получения ТПО из космоса начинается с 1990-х годов. На данный момент наилучшие ИК-данные по ТПО предоставляются радиометрами MODIS (спутники Aqua и Terra) и AVHRR/3.
Огромным достижением в развитии данного направления спутниковой океанологии стала возможность использования приборов, измеряющих ТПО в микроволновой части спектра (спутник TRMM с камерой TMI (1997 г.) [http://trmm.gsfc.nasa.gov], спутник Aqua с радиометром AMSR-E (2002 г.)).
Каждый из двух методов измерения ТПО имеет свои недостатки. Для инфракрасного излучения непреодолимой преградой является облачность любого типа, что не позволяет получать данные о ТПО в районах закрытых облаками. Также определенную негативную роль играет наличие в атмосфере различных аэрозолей, газов, водяного пара и состояние водной поверхности.