KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики". Жанр: Прочая научная литература издательство -, год -.
Перейти на страницу:

То же самое происходит с музыкальной нотой Алисы по мере приближения к точке невозврата. Сначала Боб слышит частоту 262 Гц. Потом она снижается до 200 Гц, затем до 100 Гц, до 50 Гц и т. д.

Звуку, испущенному совсем рядом с точкой невозврата, понадобится очень много времени, чтобы уйти прочь; движение воды почти полностью гасит направленную наружу скорость звука, замедляя его почти до полной остановки. Вскоре звук становится таким низким, что без специального оборудования Боб уже не может его расслышать.

У Боба может быть специальное оборудование, позволяющее фокусировать звуковые волны и получать изображения Алисы по мере ее приближения к точке невозврата. Но последовательным звуковым волнам требуется все больше и больше времени, чтобы дойти до Боба, из-за чего все, что касается Алисы, выглядит замедленным. Бе голос становится ниже; движения ее лапок замедляются почти до полной остановки. Самый последний взмах, замеченный Бобом, растягивается до бесконечности. Фактически Бобу кажется, что для достижения точки невозврата Алисе понадобится вечность.

Между тем Алиса не замечает ничего необычного. Она безмятежно дрейфует за точку невозврата, не чувствуя никакого замедления или ускорения. Опасность она осознает только потом, уже падая на смертоносные скалы. Здесь мы видим одну из ключевых особенностей черных дыр: разные наблюдатели парадоксальным образом совершенно по-разному воспринимают одни и те же события. Бобу, судя по приходящим звукам, кажется, что Алисе потребуется вечность, чтобы достичь точки невозврата, но для Алисы это может случиться в мгновение ока.

Вы уже наверняка догадались, что точка невозврата — это аналог горизонта черной дыры. Замените звук светом (напоминаю, ничто не может двигаться быстрее света), и получится очень точная иллюстрация свойств шварцшильдовской черной дыры. Как и в случае сточного отверстия, все, что пересекло горизонт, уже не может вырваться назад или даже оставаться в покое. Опасность же в черной дыре — это не острые скалы, а находящаяся в центре сингулярность. Вся материя внутри горизонта стягивается к сингулярности, где ее сожмет до бесконечного давления и плотности.

Вооружившись аналогией глухой дыры, можно прояснить для себя многие парадоксальные свойства черных дыр. Пусть, например, Боб уже не головастик, а астронавт на космической станции, обращающейся на безопасном расстоянии вокруг черной дыры. Алиса же, падая к горизонту, не поет — в открытом космосе нет воздуха, чтобы донести ее голос, — а подает сигналы голубым фонариком. По мере ее падения Боб видит, как свет смещается по частоте от голубого к красному, затем к инфракрасному, микроволновому излучению и, наконец, становится низкочастотными радиоволнами. Сама же Алиса выглядит все более вялой, замедляясь почти до полной остановки. Боб никогда не увидит, как она пересекает горизонт; с его точки зрения, на то, чтобы достичь точки невозврата, Алисе понадобится бесконечное время. Но Алиса в своей системе отсчета спокойно проваливается сквозь горизонт и начинает чувствовать что-то странное, лишь приближаясь к сингулярности.

Горизонт шварцшильдовской черной дыры располагается на радиусе Шварцшильда. Хотя Алиса и обречена после его пересечения, тем не менее у нее остается, как и у головастиков, немного времени, прежде чем она погибнет в сингулярности. Но сколько именно? Это зависит от размера, то есть от массы, черной дыры. Чем больше масса, тем больше шварцшильдовский радиус и тем больше времени в запасе у Алисы. В черной дыре с массой Солнца у нее будет всего лишь десять микросекунд. В черной дыре, которая располагается в центре галактики и может иметь массу в миллиард раз больше, у Алисы будет миллиард микросекунд, то есть примерно полчаса. Можно вообразить еще более крупную черную дыру, в которой Алиса сможет прожить целую жизнь и, возможно, даже несколько поколений ее потомков успеют состариться и умереть, прежде чем их уничтожит сингулярность.

Разумеется, по наблюдениям Боба, Алиса никогда не доберется до горизонта. Так кто же прав? Достигнет она горизонта или нет? Что реально происходит? И реально ли это? В конце концов, физика — это наблюдательная и экспериментальная наука, так что можно было бы отдать предпочтение надежным наблюдениям Боба, пусть они и находятся в очевидном противоречии с Алисиным описанием событий. (Мы еще вернемся к Алисе и Бобу после того, как обсудим удивительные квантовые свойства черных дыр, открытые Якобом Бекенштейном и Стивеном Хокингом.)

Аналогия со стоком хороша для многих целей, но, как и все аналогии, имеет свои границы. Например, когда объект проваливается сквозь горизонт, его масса добавляется к массе черной дыры. Рост массы означает расширение горизонта. Это, несомненно, можно смоделировать в аналогии со сточным отверстием, скажем, установив в нем насос для управления потоком. Каждый раз, когда в сток что-то падает, насос должен немного повышать мощность, ускоряя поток и отодвигая точку невозврата немного дальше. Но такая модель быстро теряет свою простоту[26].

Еще одно свойство черных дыр заключается в том, что они сами способны двигаться. Если поместить черную дыру в гравитационное поле другой массы, она будет ускоряться, как и любой другой массивный объект. Она даже может упасть в более крупную черную дыру. Если попытаться отразить все эти свойства реальных черных дыр в аналогии со сточным отверстием, она станет сложнее той математики, применения которой она позволяет избежать. Но, несмотря на эти ограничения, сток — это очень полезное представление, позволяющее понять основные свойства черных дыр без овладения уравнениями общей теории относительности.

Несколько формул для тех, кто их любит

Я написал эту книгу для читателей, не склонных к математике, однако для тех, кому по душе немного математических выкладок, здесь приведено несколько формул и пояснен их смысл. Если вам это неинтересно, просто переходите к следующей главе. Это же не экзамен.

Согласно ньютоновскому закону тяготения, каждый объект во Вселенной притягивает все другие объекты, причем сила гравитации пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними:

Это одно из самых знаменитых физических уравнений, оно почти так же широко известно, как и E = mc2 (это прославленное уравнение связывает энергию Е с массой т и скоростью света с).

В левой части стоит сила F, действующая между двумя массами, такими как Луна и Земля или Земля и Солнце. С правой стороны большая масса М и меньшая масса т. Например, масса Земли 6х1024 кг, а масса Луны — 7х1022 кг. Расстояние между массами обозначено D. Расстояние от Земли до Луны составляет около 4x108 м.

Последнее обозначение в уравнении, G, — это числовая константа, называемая ньютоновой гравитационной постоянной. Эту величину нельзя вывести чисто математически. Чтобы найти ее значение, необходимо измерить силу притяжения между двумя известными массами, находящимися на некотором известном расстоянии. Как только это сделано, можно вычислить силу, действующую между любыми двумя массами на любом расстоянии. По иронии судьбы, Ньютон так никогда и не узнал величину своей собственной постоянной. Дело в том, что гравитация так слаба, а величина G, соответственно, так мала, что измерить ее не удавалось до конца XIX столетия. К тому времени английский физик Генри Кавендиш разработал хитроумный способ измерения чрезвычайно малых сил. Кавендиш обнаружил, что сила, действующая между парой килограммовых масс, разнесенных на один метр, составляет примерно 6,7x10-11 ньютона. (Ньютон — это единица силы в метрической системе Си. Она составляет примерно десятую долю веса одного килограмма.) Таким образом, значение гравитационной постоянной в системе Си составляет:

G = 6,7 x10-11.

Изучая следствия из своей теории, Ньютон совершил одно важное открытие, касающееся особых свойств закона обратных квадратов. Когда вы измеряете собственный вес, часть гравитационной силы, тянущей вас к Земле, вызвана массой, находящейся прямо у вас под ногами, еще часть связана с массой глубоко внутри Земли, а часть составляет вклад масс на противоположной стороне Земли на расстоянии в 12,5 тысячи километров. Но благодаря математическому чуду можно считать, будто вся масса сосредоточена в одной точке непосредственно в геометрическом центре планеты.

Гравитация массивного шара точно такая же, как если бы вся масса была сосредоточена в его центральной точке


Этот удобный факт позволил Ньютону вычислять скорость убегания от крупного объекта, заменяя его протяженную массу крошечной массивной точкой. И вот результат:

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*