Фридрих Гернек - Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга)
Все нации должны добровольно отказаться от применения силы как крайнего средства в политике. Если они не сделают этого, они перестанут существовать.
Майнау-на-Бодензее, 15 июля 1955 года
Это заявление подписали 52 ученых, в том числе:
Макс Борн
Вальтер Боте
Адольф Бутенандт
Отто Ган
Вернер Гейзенберг
Густав Герц
Поль А. Морис Дирак
Клинтон Джозеф Дэвиссон
Ирэн Жолио-Кюри
Фредерик Жолио-Кюри
Артур Х. Комптон
Макс фон Лауэ
Вольфганг Паули
Сесиль Ф. Пауэлл
Лайнус Полинг
Чандрасекара В. Раман
Бертран Рассел
Фредерик Содди
Джеймс Франк
Георг фон Хевеши
Хидеки Юкава
Гарольд К. Юри
Джеймс Клерк Максвелл
Новое учение об электромагнетизме и свете
Атомный век имеет длительную предысторию. Его социально-экономические основы лежат в развитии общественных отношений конца XIX - начала XX века. В естественнонаучном и техническом отношении он был подготовлен открытиями в физике, волновавшими мир с начала 90-х годов. Но его корни уходят в более отдаленные времена.
С середины XIX столетия неустанно строился фундамент, на котором могло быть возведено здание физики XX века. При этом не обошлось без изменения проектов. Основные положения естественных наук либо утрачивали свою всеобщность, либо опровергались. Привычные убеждения, считавшиеся незыблемыми, рушились. Больше чем когда-либо физика в эти десятилетия становилась, по словам Эйнштейна, "приключением познания".
Каждая наука является зданием, воздвигнутым ценою бесчисленных усилий многих поколений исследователей, писал в своей книге "Путь теоретической физики от Ньютона до Шрёдингера" австрийский физик Ганс Тирринг. В среднем вклад каждого - это лишь крохотный камушек для строительства целого. Но иногда приходит человек, который возводит целый этаж или сносит часть здания и строит ее заново.
Во главе исследователей, которые, подобно архитекторам, решающим образом участвовали в перестройке фундамента физики нашего времени и заново возвели отдельные "этажи" здания, стоит Джеймс Клерк Максвелл, один из гениальнейших мыслителей в истории развития физики до Эйнштейна, охвативший в своих исследованиях физику во всех ее разделах.
Заслуги Максвелла как исследователя относятся к областям физиологического учения о цвете, кинетической теории теплоты и электромагнитной теории света.
Одновременно с Гельмгольцем Максвелл исследовал законы цветового зрения. Как предшественник австрийца Больцмана и американца Гиббса, он обосновал статистическое понимание кинетической теории газа. Его величайшей заслугой, однако является математическая разработка нового учения о магнетизме, электричестве и свете. Его достижения, по словам Планка, должны быть отнесены к "величайшим, изумительнейшим подвигам человеческого духа".
Когда Максвелл начинал свой путь физика, в сознании естествоиспытателей повсеместно и неколебимо царили законы ньютоновской механики. Все естественные явления старались объяснить с помощью простых механических законов движения в пространстве.
Подъем физики, связанный с открытием закона сохранения и превращения энергии, обеспечил в середине XIX века механистическому пониманию природы новую надежную поддержку. "Только механическое понимание является наукой", заявлял берлинский физиолог Эмиль Дюбуа-Реймон. Нечто подобное писал и Гельмгольц: "Конечная цель всего естествознания - раствориться в механике".
Программе этого воззрения на природу, впервые изложенного в манускриптах Леонардо да Винчи, в трудах Галилея и философски обоснованного Декартом, законченную форму придал Ньютон в 1687 году в своем знаменитом произведении о математических началах учения о природе.
По Ньютону, мир вещей мог быть механически описан посредством указания четырех величин: времени, пространства, момента массы и силы. Время и пространство рассматривались при этом как "абсолютные": оторванно и независимо от вещей, их заполняющих, и от событий, в них происходящих.
Кроме того, время и пространство строго разграничивались между собой. Взаимосвязь и взаимное влияние устанавливались только между моментами масс и силами. Все естественные процессы представлялись закономерными перемещениями материальных точек в пространстве и времени.
Эта "механика материальных точек", математически обоснованная Эйлером и Лагранжем, блестяще оправдалась и оказалась чрезвычайно плодотворной прежде всего в области астрономии. Ее основы были позднее распространены на движение жидкостей и упругие колебания тел и особенно успешно использовались при исследовании акустических явлений. Но в отдельных вопросах отчетливо выявилась ее ограниченность. Особенно часто возникали непреодолимые трудности в оптике.
Самым неудовлетворительным разделом в системе классической физики, созданной Ньютоном, было учение о свете.
Ньютон, следуя логике своего учения, считал свет естественной вещью, состоящей из материальных точек. Но уже в его время, как заметил Эйнштейн, "назревал жгучий вопрос: что происходит с материальными точками, образующими свет, когда свет поглощается?". Так неизбежно пришли к различию между весомыми и невесомыми частицами - малоубедительное решение, которое не могло долго считаться исчерпывающим объяснением.
Неудобства для глубоко мыслящих физиков таило в себе также представление о "силах дальнодействия".
Магнетизм, электричество и гравитация изображались как силы, действующие в пустом пространстве и распространяющиеся с бесконечно большой скоростью. Такое толкование физических взаимодействий, представляющее их едва ли не как сверхъестественные силы, не соответствовало трезво реалистической механистической картине природы. Уже Ньютон искал выход, но не добился успеха.
Не было недостатка в попытках объяснить световые явления принципиально иным способом. Гениальный голландский физик Христиан Гюйгенс, старший современник Ньютона, пытался охватить природу света своей теорией световых волн. Он предположил, что свет существует в виде продольных колебаний, которые распространяются в веществе, состоящем из мелких частиц, во все стороны от источника возбуждения, подобно звуку в воздухе.
Во всяком случае, сторонники Гюйгенса тщетно старались противопоставить его волновое представление корпускулярной теории света, которая поддерживалась высоким авторитетом Ньютона; это особенно показательно как пример тормозящего влияния, которое может оказать в науке большой авторитет. Борьба между корпускулярной и волновой теориями позднее повторилась и при объяснении других видов излучения.
Волновая теория света смогла победить только после того, как английский врач и физик Томас Юнг и французский естествоиспытатель и инженер Огюстен Френель в первых десятилетиях XIX века придали ей иной облик.
Юнг и Френель исходили из того, что свет распространяется не в виде продольных колебаний, подобных колебаниям воздуха во время игры на флейте, а в виде поперечных колебаний, подобных колебаниям скрипичной струны. С колебаниями такого рода связаны оптические явления поляризации, дифракции и интерференции света, которые не поддавались объяснению на основе ньютоновской корпускулярной теории света.
Гипотетическая основа световых колебаний (механический носитель волн света) стала со времени Гюйгенса называться световым эфиром, или, короче, эфиром.
Поскольку свет представляли себе в виде продольных волн, можно было вообразить эфир как разреженный газ. Если же распространение света предполагалось в форме поперечных волн, тогда следовало эфир мыслить как твердое упругое тело. При весьма малой плотности он должен быть тверже, чем сталь и алмаз. Одновременно световому эфиру приписывали полнейшую проницаемость, с тем чтобы небесные тела могли двигаться сквозь него без помех, как они это и делали со всей очевидностью. Эфир должен был обладать инерционной массой, но не мог иметь гравитационной массы.
Все эти свойства не уживались между собой. Таким образом, эфир представлял собой весьма загадочное явление и был предметом постоянных забот механистического мировоззрения, ибо он упорно сопротивлялся любой попытке механического осмысления. Гипотеза эфира оказалась недостоверной в своей основе.
Радикальный обоснованный ответ на этот загадочный вопрос дал в начале XX столетия Эйнштейн, отказавшись при изложении законов электродинамики от эфира. Однако первый и важный шаг на пути к современной картине природы без эфира сделал еще Максвелл, создав электродинамическую теорию света, пошатнувшую традиционную механическую теорию.
У Максвелла было два предшественника, на исследования которых он опирался: Эрстед и Фарадей.
Ганс Христиан Эрстед, датский врач и естествоиспытатель, в первой половине XIX века был профессором физики в Копенгагене. В 1820 году, во время эксперимента, сопровождавшего лекцию, он впервые заметил магнитное действие электрических токов. Таким образом, он стал первооткрывателем электромагнетизма. Это открытие имело большое научное и техническое значение. Оно привело к изобретению электромагнитного телеграфа и в дальнейшем к созданию электромотора.