KnigaRead.com/

С. Капица - Синергетика и прогнозы будущего

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн С. Капица, "Синергетика и прогнозы будущего" бесплатно, без регистрации.
Перейти на страницу:

И в этом ряду большое место занимают работы последних лет, связанные с предсказуемостью и так называемым динамическим хаосом. Они позволили осознать еще один барьер. Оказалось, что мы, в принципе, не можем дать "долгосрочный прогноз" поведения огромного количества даже сравнительно простых механических, физических, химических и экологических систем. Можно предположить, что предсказуемое на малых и непредсказуемое на больших временах поведение характерно для многих объектов, которые изучают экономика, психология и социология.

Обычно передний фронт фундаментальных исследований связывают с гигантскими астрофизическими масштабами или микроструктурой материи. Работы по динамическому хаосу показали, что парадоксальными свойствами, которые, по существу, только начинают изучаться, обладают объекты, прекрасно описываемые классической механикой.

Чтобы сформулировать главное, что внесла в проблему прогноза новая область исследований, называемая нелинейной динамикой (английский термин nonlinear science – нелинейная наука – здесь, наверное, удачнее), можно выделить следующее отличие появившихся представлений от старых.

Раньше думали, что есть два класса объектов. Одни – детерминированные. Прогноз их поведения может быть дан на любое желаемое время. Другие – стохастические. Ими занимается теория вероятностей. Типичный пример – бросание костей или монетки. То, что выпадает в этот раз, никак не связано с предысторией. Здесь нельзя говорить о детерминированном прогнозе и можно иметь дело лишь со статистическими характеристиками – средними значениями, дисперсиями, распределениями вероятностей.

В последние двадцать лет было показано, что есть еще один важный класс объектов. Формально они являются детерминированными – точно зная их текущее состояние, можно установить, что произойдет с системой в сколь угодно далеком будущем. И вместе с тем предсказывать ее поведение можно лишь в течение ограниченного времени. Сколь угодно малая неточность в определении начального состояния системы нарастает со временем, и с некоторого времени мы теряем возможность что-либо предсказывать. На этих временах система ведет себя хаотически. Тут вновь приходится говорить лишь о статистическом описании. Такие системы были обнаружены в гидродинамике, физике лазеров, химической кинетике, астрофизике и физике плазмы, в геофизике и экологии. Поистине огромна область, в которой наши возможности предсказывать весьма ограничены. Однако в некоторых случаях осознанный барьер не только лишает иллюзий, но и помогает увидеть истинный масштаб стоящих проблем.

Странность странных аттракторов

Если наши результаты, касающиеся неустойчивости непериодического течения, применить к атмосфере, которая явно не периодична, то получается, что предсказать погоду на достаточно отдаленное будущее невозможно никаким методом, если только теперешнее состояние не известно точно.

Э. Лоренц

Обсуждая крупное научное достижение, рождение новой идеи, всегда интересно посмотреть, что думали по этому поводу предшественники и современники автора. И часто оказывается, что они высказывали близкие мысли. Идея "витала в воздухе". Не является исключением и открытие хаоса в детерминированных системах.

Суть идеи прекрасно сформулирована в рассказе Рея Брэдбери "И грянул гром". Одна из компаний устраивает с помощью машины времени для своих клиентов сафари – охоту на доисторических животных. Компания тщательно выбирает животных для отстрела и специальные маршруты передвижения охотников, чтобы происшедшее практически не имело последствий. Однако, по случайности, герой рассказа во время неудачной охоты сошел с маршрута и раздавил золотистую бабочку. Затем он возвращается в свое время и осознает, как драматически повлияла судьба бабочки на дальнейший ход событий. Неуловимо изменился химический состав воздуха, оттенки цветов, изменились правила правописания и, наконец, результаты последних выборов. К власти пришел режим, жестоко расправившийся со своими противниками. В свой последний миг герой рассказа понимает, что гибель бабочки нарушила хрупкое равновесие; повалились маленькие костяшки домино, большие костяшки, гигантские костяшки ...

Образ падающих костяшек увеличивающегося размера превосходно иллюстрирует важнейшее свойство детерминированных систем с хаотическим поведением – чувствительность к начальным данным. Начальные отклонения с течением времени нарастают, малые причины приводят к большим следствиям. Это явление иногда называют эффектом бабочки, так объясняя название: взмах крыльев бабочки в неустойчивой системе может со временем вызвать бурю, изменить погоду в огромном регионе.

А вот какое рассуждение, посвященное предсказуемости, приводится в фейнмановских лекциях по физике: "Обычно думают, что недетерминированность, невозможность предсказать будущее – это особенность квантовой механики, и именно с ней связывают представление о свободе воли и т.д. Но если бы даже наш мир был классическим, т.е. если бы законы механики были классическими, все равно из этого не следует, что то же или какие-то аналогичные представления не возникли бы. Да, конечно, с точки зрения классики, узнав местоположение и скорость всех частиц в мире (или в сосуде с газом), можно точно предсказать, что будет дальше. В этом смысле классический мир детерминирован. Но представьте теперь, что наша точность ограничена и что мы не знаем точно положение только одного из атомов; знаем, скажем, его с ошибкой в одну миллиардную. Тогда, если он столкнется с другим атомом, неопределенность в знании его координат после столкновения возрастет. А следующее столкновение еще сильнее увеличит ошибку. Так что если сначала ошибка и была еле заметной, то все равно вскоре она вырастает до огромнейшей неопределенности.

Ясно, что мы не можем по-настоящему предвидеть положение капель, если мы не знаем движения воды абсолютно точно.

Правильнее будет сказать, что для данной точности (сколь угодно большой, но конечной) можно всегда указать такой большой промежуток времени, что для него становится невозможным сделать предсказания. И этот промежуток (в этом вся соль) не так уж велик ... Время с уменьшением ошибки растет только логарифмически, и оказывается, что за очень и очень малое время вся наша информация теряется".

Американское издание фейнмановских лекций вышло в 1963 г. В том же году в "Journal of the Atmospheric Sciences" появилась статья американского метеоролога Эдварда Лоренца, положившая начало новому направлению в естествознании – исследованию хаоса в детерминированных системах.

Тем не менее, можно только удивляться научной смелости Э. Лоренца, выбравшего простейшую модель – систему всего лишь трех обыкновенных дифференциальных уравнений, просчитавшего ее на компьютере и сумевшего понять, что он имеет дело не с ошибками вычислений, а с открытием.

Математический образ детерминированных непериодических процессов, для которых невозможен долгосрочный прогноз, назвали странными аттракторами. Эти аттракторы (от английского to attract – притягивать) действительно странные и очень красивые.

Рис. 1. Странный аттрактор, соответствующий установившемуся режиму в модели, описывающей колебательную химическую реакцию. Точка, определяющая состояние объекта, принадлежит трехмерному пространству (математики говорят, что фазовое пространство этой динамической системы трехмерно). Представлены проекции аттрактора на две различные плоскости.

На рис.1 показан "портрет" такого аттрактора, описывающего колебания в некой химической реакции, которую моделировали на компьютере. Аттрактор на рис.2 получен при обработке эксперимента по изучению знаменитой колебательной химической реакции Белоусова-Жаботинского [25].

Рис. 2. Проекция аттрактора, полученная при экспериментальном исследовании реакции Белоусова-Жаботинского. Эта колебательная химическая реакция при определенных условиях может идти в хаотическом режиме [25].

Смысл динамического хаоса легко понять, глядя на второй рисунок. Точка, определяющая состояние системы (например, концентрации химических реакций), движется по этому аттрактору, как "сани" по американской горке. Эти "сани" будут поворачивать и двигаться то по левой, то по правой "ленте". Допустим, мы запустили рядом двое "саней" (например, одни – идеальная модель системы, другие – сама система). Сначала, когда они двигаются близко друг к другу, по положению одних "саней" можно сказать, где находятся другие (тут и возможен прогноз). Но, начиная с некоего момента времени ( горизонта прогноза), одни "сани" поворачивают влево, а другие – вправо. Даже точно зная, где одни "сани", мы теряем возможность что-либо сказать о других.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*