KnigaRead.com/

Неизвестен Автор - Эврика-87

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн неизвестен Автор, "Эврика-87" бесплатно, без регистрации.
Перейти на страницу:

Большого внимания заслуживают сланцы и нефтяные пески как будущие источники энергии. Ведь их хватило бы человечеству на добрую тысячу лет.

В освоении сланцев ведущее место в мире занимает наша страна. Фундаментальные принципы получения ценных продуктов из сланцев (не только для энергетики, но также для нефтехимии и органического синтеза) заложены работами эстонских ученых и ученых из Ленинградского технологического института.

Топливные плантации

Для получения жидкого топлива, заменяющего нефть, разумеется, можно использовать не только уголь. Голландский химик С. де Витт доказывает, что вполне успешные результаты достижимы, если брать за основу некоторые виды тропических растений. В практических опытах до сих пор удалось получить за год чуть более кубометра эрзац-нефти с гектара, засеянного такими растениями. Однако ученые полагают, что биотехнология позволит повысить "урожайность" нефтяных плантаций в два-три раза.

Если расценивать подобные эксперименты в плане обобщения, то можно предвидеть, что в будущем многие десятки тысяч гектаров малоценных земель и лесов станут источниками жидкого топлива.

Переработка зеленой биомассы в топливо заключается в газификации древесины и ферментации Сахаров.

В качестве целевого продукта необяза

тельно мыслить лишь углеводороды.

Известны и другие органические вещества, которые по своим энергетическим свойствам близки к нефти: эфиры, кетоны или спирты (метанол, этанол, бутанол). Спирты имеют очень высокое октановое число, что является важнейшей целью при разработке заменителей высококачественного топлива.

Ферментацией отходов сахарного тростника только в 1981 году в Бразилии было получено 4,2 миллиона литров этанола. На этом топливе работают все автобусы крупнейших бразильских городов Сан-Паулу и Рио-де-Жанейро, а также многие автомобили в целом по стране. В США этанол получают из отходов кукурузы. На Филиппинах масло кокосовых орехов смешивают с дизельным топливом. В 1982-1983 годах это позволило сэкономить стране 2,2 процента дизельного топлива.

В ряде стран из сельскохозяйственных отходов получают метан, который затем используют в качестве топлива.

На филиппинском острове Лусон так работает котельная, подающая горячую воду в сто домов круглый год.

В период с 1977 по 1982 год Япония снизила количество нефти, которое идет на топливо, с 74,5 до 62 процентов, а к 1990 году надеется довести этот показатель до 50 процентов. Здесь из рисовой соломы получают этанол, из сельскохозяйственных отходов - ацетон и бутанол. Значительны успехи биотехнологии в США, ФРГ, Англии, Франции. В лабораторных условиях здесь получают из биомассы метанол, этанол, этилен, пропилен, бутадиен, метан, ароматические соединения и другие виды альтернативного по отношению к нефти топлива.

Перспективы практического развития этих экспериментальных разработок неравноценны. Метанол можно получать из любого сырья, содержащего углерод и водород,- из угля и древесины, природного газа и сланцев, торфа и отходов переработки нефти.

Этанол как топливо близок по своим характеристикам к метанолу, но дороже, поскольку его производство отличается большей энергоемкостью. Бутанол - топливо с более высокими характеристиками, но его производство сложнее. Какой из упомянутых процессов получит наибольшее признание в будущем, покажет время.

Еще одно достоинство грецких орехов

Сейчас осваиваются такие ресурсы, которые до недавнего времени вообще не рассматривались как источники энергии. В ход пошли "альтернативы альтернативам" - от миндальной скорлупы до персиковых косточек. И не без успеха. "Сан даймонд гроверс оф Калифорния" производит 4,5 мегаватта электроэнергии за счет сжигания скорлупы грецких орехов - побочного продукта их переработки. Таким образом, в течение года экономится 11 тысяч тонн нефти. Как заявил один из руководителей компании, "грецкий орех дает превосходное и не загрязняющее окружающую среду топливо, оно не содержит серы и дает очень мало золы". Фирма "Имотек инкорпорейшн" вырабатывает 8,5 мегаватта электроэнергии путем сжигания миндальной скорлупы, косточек персиков и слив.

Еще один нетрадиционный источник энергии - бытовые отходы. В мире более 100 миллионов тонн таких отходов сжигается в печах с регенерацией энергии. Это, конечно, мизерное количество по сравнению с мусором, который все еще вывозится на свалки, представляя немалую опасность для окружающей среды. Небезопасно, впрочем, и простое сжигание мусора: при современном уровне очистки отходящие газы не утрачивают своей вредности.

В настоящее время химики многих стран работают над совершенствованием фильтров, улавливающих вредные вещества из газов. Из газообразных продуктов сжигания мусора необходимо удалять сажу, хлористый водород, окислы азота, двуокись серы и т. д. Что касается методов улавливания, то они уже разработаны. Вопрос лишь в том, как сделать их более дешевыми, надежными, долго работающими.

Особое внимание уделяется сейчас пиролизу (термическому разложению)

мусора и получению из него газообразного топлива. Пока здесь больших успехов нет, так как состав бытовых отходов неоднороден, и поэтому трудно подбирать и регулировать оптимальный режим пиролиза. Кроме того, в мусоре много вредных примесей.

Предлагается выделять из него наиболее горючие компоненты - бумагу, картон, пластики - и прессовать их в брикеты. Такие брикеты по теплотворности сравнимы с бурым углем.

Как полагают эксперты, усовершенствованная переработка бытовых отходов (как в энергию, так и сырье) позволит только Западной Европе достичь ежегодной экономии порядка 14 миллиардов долларов. Разделение отходов должно происходить уже на дому:

в одни контейнеры нужно сбрасывать пищевые отходы, в другие - бумагу и т. д. Такой путь предполагает высокую сознательность населения в отношении охраны окружающей среды и экономии сырья и энергии.

Теплые дома без отопления

Излучение Солнца в наши дни занимает в балансе энергетиков такое же положение, как нефть в середине прошлого века, когда преобладали уголь, торф и дрова.

Однако уже сегодня ток, вырабатываемый Солнцем, вливается тонкой струйкой в энергетический поток дли нужд человечества. Кремниевые пластинки преобразуют солнечный свет электроэнергию. Специалисты убеждены, что к 2060 году доля энергии Солнца на мировом энергетическом рынке превысит 50 процентов.

В феврале 1983 года американски фирма "Арко Солар" начала эксплуатировать первую в мире солнечную электростанцию мощностью 1 мег"

ватт. Эта же компания приступила к строительству фотоэлектрической станции в Калифорнии, мощность которой должна достичь 6,5 мегаватта.

На вершинах Гималаев солнечные батареи заряжают никель-кадмиевые аккумуляторы альпинистов. В пустынях Египта они питают ирригационные насосы, а в отдельных районах Австралии - электрические ограждения для овец. В домах японских крестьян они греют воду и дают электроток. Солнечные печи для подогрева воды прижились в Среднеазиатских республиках нашей страны.

До недавнего времени из-за высокой стоимости солнечных элементов они применялись либо в космонавтике, либо в местностях, отдаленных от линий электропередачи, либо в особых видах изделий, где затраты энергии минимальны. Сейчас цена на эти элементы быстро падает: за последние 10 лет она понизилась в 3,5 раза. В этом заслуга химиков, разработавших новые способы получения кремниевых солнечных элементов.

Обычно солнечные элементы изготавливают из монокристаллических кремниевых стержней, выращиваемых в лаборатории. Их разделяют на маленькие пластинки, которые затем собирают в панели. Сейчас все большее внимание уделяется поликристаллическому и аморфному кремнию. Ему придают форму пленки толщиной I микрометр. КПД элементов на аморфном кремнии составляет 6-10 процентов, а на монокристалле - 12-16 процентов, но первые значительно дешевле, так как для их создания не требуется материала высокой чистоты.

Вполне вероятно, что для наших еж- квартир и производственных помещении ний в ближайшем будущем не понадоком бится столько тепла, как сегодня. Сейчас ведется разработка нового строимая тельного материала, призванного обеслуа- лечить 50-процентную экономию тепную шповой энергии при обогреве зданий.

Это -важнейшее свойство нового материала заключается в том, что он пропускает солнечный свет, но задерживает тепло.

Стенки здания, покрытые прозрачными панелями из этого материала, обогреваются солнечной энергией. При этом не происходит обратной отдачи тепла. Путь накопленной тепловой энергии открыт только внутрь здания.

Даже в холодное время Солнце будет поставлять значительную часть тепла, необходимую для обогрева здания...

Здесь затронуты лишь немногие вопросы снабжения человечества энергией. Не следует думать, будто химики не участвуют в разработке других, не упомянутых здесь источников энергии.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*