KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Стивен Вайнберг - Объясняя мир. Истоки современной науки

Стивен Вайнберг - Объясняя мир. Истоки современной науки

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Стивен Вайнберг, "Объясняя мир. Истоки современной науки" бесплатно, без регистрации.
Перейти на страницу:

Рис. 8. Использование параллакса для определения расстояния до Луны. Здесь ζ’ – угол между наблюдаемым положением Луны и вертикалью, а ζ – то значение, которое было бы у этого угла, если можно было наблюдать Луну из центра Земли.


Точки C, O и M образуют треугольник, в котором угол при вершине C равен ζ, угол при вершине O равен 180° – ζ’, а при вершине M, поскольку сумма углов любого треугольника равна 180°, угол будет 180° − ζ – (180° − ζ’) = ζ’ − ζ (см. рис. 8). Отношение d/ из значений этих углов мы можем получить намного проще, чем это делал Птолемей, воспользовавшись теоремой из современной тригонометрии: в любом треугольнике длина каждой стороны пропорциональна синусу противолежащего угла (о том, что такое синус, расскажем в техническом замечании 15). Угол, противолежащий отрезку CO длиной , равен ζ’ − ζ, а угол, противолежащий отрезку CM длиной d, равен 180° − ζ, поэтому



1 октября 135 г. Птолемей определил, что зенитный угол при наблюдении из Александрии составляет ζ’ = 50°55’, и его расчеты показали, что в тот же самый момент при наблюдении из центра Земли угол ζ был бы равен 49°48’. Соответствующие синусы этих углов равны



Зная эти числа, Птолемей смог заключить, что расстояние от центра Земли до Луны в единицах радиуса Земли составляет:



Эта величина существенно меньше, чем настоящее значение, в среднем примерно равное 60. Проблема оказалась в том, что Птолемей неточно определил разность углов ζ’ и ζ, но по крайней мере полученный результат давал верное представление о том, какого порядка величина расстояния до Луны.

Так или иначе, Птолемей рассчитал его более точно, чем Аристарх, который на основании своих расчетов отношения диаметров Земли и Луны, а также расстояния до Луны к ее диаметру смог бы указать предельные значения для d/, равные 215/9 = 23,9 и 57/4 = 14,3. Однако если бы Аристарх использовал правильное значение 1/2° для углового диаметра лунного диска вместо неверной величины 2°, то соотношение d/ у него получилось бы в 4 раза больше, в промежутке от 57,2 до 95,6. Такой промежуток включал бы истинную величину.

15. Синусы и хорды углов

Раздел современной математики, который называется тригонометрией, изучаемый сейчас в школах и высших учебных заведениях, мог бы здорово помочь античным математикам и астрономам. Тригонометрия учит, каким образом, зная любой из углов прямоугольного треугольника, кроме прямого, вычислить соотношения всех его сторон. Например, результат деления длины катета, противолежащего данному углу, на длину гипотенузы является значением функции под названием «синус угла». Это число можно найти в математических таблицах или рассчитать на калькуляторе, если ввести значение угла и нажать кнопку «sin». В том же треугольнике отношение прилежащего к тому же углу катета к гипотенузе называется косинусом угла, а противолежащего катета к прилежащему – его же тангенсом, но нам сейчас достаточно поговорить о синусах. Хотя синус ни разу не упоминается в трудах математиков эпохи эллинизма, в «Альмагесте» Птолемея встречается связанная с ним функция, которая называется хордой угла.

Чтобы дать определение хорде угла θ (тета), нарисуем окружность радиусом 1 (в любых удобных для вас единицах измерения длины) и проведем из ее центра два луча, разделенные углом θ. Хордой угла будет в этом случае называться отрезок, соединяющий точки пересечения этих двух радиусов с окружностью (см. рис. 9). В «Алмагесте» приводится таблица хорд[30] в вавилонской шестидесятеричной системе счисления, в которой углы выражены в градусах, в промежутке от 1/2° до 180°. Например, для угла 45° в таблице дано значение хорды 45 55 19, что можно перевести в привычный нам вид таким образом:



В то же время истинное значение равняется 0,7653669…

Хорды естественным образом применяются в астрономии. Если мы представим себе, что звезды расположены на сфере единичного радиуса, центр которой совпадает с центром Земли, то, если две звезды разделены угловым расстоянием θ, воображаемый отрезок, соединяющий эти две звезды на сфере по прямой, будет иметь длину хорды угла θ.


Рис. 9. Хорда угла θ. Начерченная здесь окружность имеет радиус, равный 1. Два изображенных сплошной линией радиуса образуют угол θ. Горизонтальный отрезок проведен между точками пересечения радиусов с окружностью. Его длина равна хорде этого угла.


Чтобы понять, какое отношение хорды имеют к тригонометрии, вернемся к геометрическому определению хорды угла θ и проведем перпендикуляр (штриховая линия на рис. 9) к хорде из центра окружности, который делит хорду точно пополам. Мы получим два прямоугольных треугольника, у каждого из которых угол, прилегающий к центру окружности, равен θ/2, а противолежащий ему катет в два раза короче хорды. Гипотенузы обоих треугольников равны радиусу окружности, который мы принимаем равным 1, поэтому синус угла θ/2 – в математической записи sin θ/2 – есть половина хорды угла θ, или:

chordθ = 2 sin(θ/2).

Поэтому любое вычисление с использованием синусов можно выполнить и при помощи хорд, хотя и с несколько меньшим удобством.

16. Горизонт

Как правило, посмотреть вдаль нам мешают стоящие недалеко от нас деревья, дома или другие предметы. Стоя на вершине холма в ясный день, мы можем видеть намного дальше, но пределом видимости все равно будет линия горизонта, предметы позади которой мы не видим, потому что их от нас закрывает сама Земля. Арабский астроном аль-Бируни описал хитроумный метод, как, используя это хорошо знакомое всем явление, вычислить радиус Земли, измерив лишь одну линейную величину – высоту горы.

Пусть наблюдатель в точке O вершины горы может видеть самую дальнюю точку H на поверхности Земли, в которой луч его зрения касается земного шара (см. рис. 10).

Этот луч зрения расположен под прямым углом к радиусу, соединяющему точку H с центром Земли C, поэтому треугольник OCH является прямоугольным. Луч зрения пролегает ниже горизонтальной плоскости на некоторый угол θ, который мал за счет того, что Земля большая и линия горизонта находится далеко от наблюдателя. Угол между тем же лучом зрения и вертикальным направлением вниз в точке расположения наблюдателя равен 90° – θ, а значит, поскольку сумма углов любого треугольника равна 180°, острый угол треугольника, прилежащий к центру Земли, равняется 180° − 90° − (90° − θ) = θ. Прилежащий ему катет CH имеет длину, равную радиусу Земли r, а длина гипотенузы треугольника CO есть сумма радиуса Земли r и высоты горы h. По определению, косинус угла прямоугольного треугольника есть отношение длины прилежащего катета к длине гипотенузы, поэтому здесь



Рис. 10. Примененный аль-Бируни метод определения радиуса Земли путем измерения горизонта. O – наблюдатель на вершине возвышенности высотой h. H – линия горизонта с его точки зрения. Отрезок OH является касательной к поверхности Земли в точке h и, значит, образует прямой угол с радиусом, проведенным из центра Земли C в точку H.


Чтобы вывести из этого уравнения r, обратим внимание, что, если перевернуть обе части, получается равенство 1 + h/r = 1/cos θ. Если теперь вычесть из левой и правой части единицу и снова их перевернуть, то мы получим:



К примеру, наблюдая горизонт на горе в Индии, аль-Бируни нашел, что θ = 34’. Косинус этого угла cos θ = 0,999951092, а 1/cos θ – 1 = 0,0000489. Значит,



Согласно аль-Бируни, высота этой горы составляла 652,055 локтя (это число дано с точностью, намного превышающей доступную ему точность измерений), что дает результат r = 13,3 млн локтей, хотя он сам приводит число 12,8 млн локтей. В чем именно аль-Бируни ошибся, мне неизвестно.

17. Геометрическое доказательство теоремы о средней скорости

Построим график изменения скорости в зависимости от времени для движения с постоянным ускорением, отложив скорость вдоль вертикальной оси, а время – вдоль горизонтальной. График будет представлять собой прямую линию от нуля до конечной скорости в конечный момент времени. В каждый достаточно малый отрезок времени пройденное расстояние равняется произведению скорости, которое имело тело в этот момент (примем, что изменение скорости пренебрежимо мало в этот промежуток времени, если он сам мал), на длину временно́го отрезка.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*