Стивен Вайнберг - Объясняя мир. Истоки современной науки
Теперь рассмотрим тело, вес которого больше, чем вес воды такого же объема. Оно не будет плавать, но его можно подвесить в толще воды при помощи веревки или троса. Если конец троса прикрепить к плечу весов, то таким способом мы можем измерить кажущийся вес Wкаж тела, погруженного в воду. Если мы точно так же, как и в предыдущем случае, выделим в глубине воды прямо под телом равное ему по площади пятно воды, то действующий на него вес будет составлен из двух слагаемых. Первое равно разности истинного веса Wист подвешенного тела и его кажущегося веса Wкаж, который полностью компенсируется натяжением троса. Второе слагаемое – это вес воды выше пятна, за исключением воды, вытесненной телом. Можно сравнить значение этой суммы с тем весом, который давит на такую же площадь, расположенную на такой же глубине, но в стороне: этот вес не будет включать слагаемые Wист и −Wкаж, но будет равняться весу столба воды от выделенного сечения до поверхности, без учета какой-либо вытесненной воды. Чтобы на оба сечения действовало одинаковое давление, необходимо выполнение равенства:
где Wвыт – вес воды, вытесненной подвешенным в воде телом. Взвешивая таким образом тело в воде и вне воды, можно найти Wист и Wкаж, а отсюда Wвыт. Если объем тела равен V, то
Здесь ρводы (ро) обозначается плотность (отношение веса к объему) воды, это значение приблизительно равняется 1 г/см³. (Конечно, для тела простой формы, например куба, его объем можно определить простым обмером, но это трудно сделать для тела неправильной формы вроде короны.) Кроме того,
где ρтела – плотность тела. Если взять отношение Wист к Wвыт, то объем V сократится в дроби, и, таким образом, измеряя Wкаж и Wист, мы можем определить отношение плотностей тела и воды:
Полученная величина называется относительной плотностью материала, из которого изготовлено тело. Например, если в воде тело весит в воде на 20 % меньше, чем в воздухе, то Wист − Wкаж = 0,20 × Wист, то есть его плотность должна быть в 1/0,2 = 5 раз больше плотности воды. Иными словами, его относительная плотность по отношению к воде равняется 5.
В этом анализе вода не играет какую-либо определяющую роль. Если то же самое тело подвешивать в какой-нибудь другой жидкости, то соотношение истинного веса и уменьшения веса тела в этой жидкости будет также равняться соотношению плотностей самого тела и этой жидкости. Часто этот принцип используется так: тело известного веса и объема погружают в различные жидкости для того, чтобы измерить плотности этих жидкостей.
10. Площадь круга
Чтобы рассчитать площадь круга, Архимед представлял себе многоугольник с большим количеством сторон, описанный вокруг круга. Для простоты рассмотрим правильный многоугольник, у которого все стороны и углы равны. Площадь такого многоугольника есть сумма площадей всех прямоугольных треугольников, которые образуются, если провести лучи из центра многоугольника к каждой из его вершин и к середине каждой из его сторон (см. рис. 4, здесь для примера в качестве многоугольника взят правильный восьмиугольник). Площадь прямоугольного треугольника равна половине произведения обоих его катетов, поскольку два таких треугольника можно сложить вместе гипотенузами, и тогда они образуют прямоугольник, площадь которого равна произведению катетов исходного треугольника. В нашем случае это означает, что площадь каждого треугольника равна половине произведения отрезка r от центра до середины каждой из сторон многоугольника (то есть радиусу круга) и отрезка s от точки на середине стороны до вершины, который, конечно, равен половине стороны многоугольника. Просуммировав площади всех этих треугольников, мы обнаружим, что площадь всего многоугольника равна половине произведения r на полный периметр всего многоугольника. Если мы будем увеличивать количество сторон в многоугольнике до бесконечности, то его площадь будет все точнее совпадать с площадью вписанного круга, а его периметр – с длиной окружности круга. Поэтому площадь круга равна половине произведения его радиуса на длину окружности.
Сегодня мы знаем число π = 3,14159… такое, что длина окружности радиусом r будет равняться 2πr. Тогда площадь круга равна
Рис. 4. Вычисление площади круга. Чтобы рассчитать площадь круга, используется описанный многоугольник. На этом рисунке у многоугольника восемь сторон, и его площадь уже приблизительно равна площади круга. Чем больше будет сторон у многоугольника, тем точнее его площадь будет совпадать с площадью круга.
Те же самые выводы справедливы и если мы будем вписывать многоугольник внутрь круга, а не описывать его снаружи, как на рис. 4. Поскольку окружность всегда находится между вписанным и описанным многоугольником, расчет площадей обоих этих многоугольников позволил Архимеду найти верхние и нижние границы для отношения длины окружности к ее радиусу, то есть для величины 2π.
11. Размеры Солнца и Луны и расстояния до них
Аристарх использовал четыре наблюдательных факта, чтобы определить расстояния от Земли до Солнца и Луны, а также диаметры Солнца и Луны. Все полученные результаты он выразил в единицах диаметра Земли. Рассмотрим каждое из выполненных им наблюдений по очереди и посмотрим, что можно узнать, основываясь на них. Далее расстояния между Землей и Солнцем и Землей и Луной будут обозначаться соответственно dс и dл, а диаметры Солнца, Луны и Земли – Dс, Dл и Dз. Предполагая, что диаметры этих тел ничтожно малы по сравнению с расстояниями между ними, примем, что в рассуждениях о расстояниях между Землей, Луной и Солнцем не обязательно брать во внимание расположение на Земле точек, из которых выполняются наблюдения.
Наблюдение 1
Когда Луна в фазе первой или последней четверти, угол между направлениями на Луну и на Солнце составляет 87°.
Если в этот момент смотреть с Луны, угол между направлениями на Солнце и на Землю должен составлять точно 90° (см. рис. 5а), поэтому треугольник, образованный отрезками Луна – Солнце, Луна – Земля и Земля – Солнце, является прямоугольным, в котором отрезок Земля – Солнце есть гипотенуза. Отношение катета, прилежащего к углу θ (тета) в прямоугольном треугольнике, к его гипотенузе – тригонометрическая функция косинус угла θ, которая обозначается cos θ, и ее значение мы можем взять из таблицы или рассчитать на калькуляторе с тригонометрическими функциями. Итак,
и значит, из наблюдения следует, что Солнце в 19,11 раз дальше от Земли, чем Луна. Не зная тригонометрии, Аристарх мог лишь заключить, что это число не меньше 19 и не больше 20. На самом деле этот угол равен не 87°, а 89,853°, и поэтому Солнце в действительности находится в 389,77 раз дальше от Земли, чем Луна.
Рис. 5. Четыре наблюдения, которые Аристарх использовал для расчета размеров Солнца и Луны и расстояний от Земли до них: а) треугольник, образуемый Землей, Солнцем и Луной в момент, когда Луна находится в середине фазы первой или последней четверти; б) диск Луны точно закрывает диск Солнца для земного наблюдателя во время полного солнечного затмения; в) Луна заходит в тень Земли во время полного лунного затмения. Сфера, которая на месте Луны точно перекрывала бы конус тени, имеет диаметр, вдвое больший, чем у Луны, а точка P – крайняя точка конуса тени, отбрасываемой Землей; г) видимый угловой размер Луны по Аристарху составляет 2°; истинное его значение близко к 0,5°.
Наблюдение 2
Луна точно покрывает видимый диск Солнца во время полного солнечного затмения.
Это показывает, что у Луны и Солнца примерно один и тот же видимый угловой размер, в том смысле, что угол между направлениями от земного наблюдателя на противоположные края диска Солнца такой же, как между направлениями на противоположные края диска Луны (см. рис. 5б). Отсюда следует, что треугольники, образуемые этими линиями и поперечными диаметрами Луны и Солнца, являются «подобными», то есть углы при вершинах у них попарно равны. Поскольку соотношения размеров сторон в подобных треугольниках одинаковы для всех сторон, то