Владимир Антонов - Эфир. Русская теория.
С гравитацией атомов связано и такое понятие, как их вес. Долгое время мы считали, что он определяется двумя факторами: собственной массой и притяжением планеты. Теперь мы говорим, что притяжения нет совсем, а масса может быть либо инерционной, либо гравитационной. Вес атома, в нашем представлении, определяется его массой гравитации и градиентом эфирного давления.
Из всего сказанного про вес атома следует несколько неожиданные на первый взгляд выводы: во-первых, не планета притягивает атом, а космос выдавливает его в направлении к центру планеты, и во-вторых, чем больше атом, тем он, условно говоря, легче. Давайте на этом пока остановимся и договоримся вернуться к более детальному рассмотрению понятия веса несколько позже.
Завершим наше знакомство с атомами констатацией того, что у них, как и у электронов, есть своё внутреннее время, и объясняется это также тем, что у атомов есть постоянно изменяющееся внутреннее состояние, выражающееся во вращении его оболочки. Есть у времени атома и точка отсчёта, когда он возник, и есть конец его существованию, когда он распадается или трансформируется в другой атом. Распад атомов может происходить по двум причинам: во-первых, в результате снижения избыточной плотности окружающего эфира до критического значения, и тогда ничего от атома не останется; и во-вторых, в результате силового разрыва; при этом шнур тела атома может оказаться разорванным на несколько кусков, самых различных по величине. Крупные фрагменты шнура, если им позволит их длина, замкнутся в кольца и превратятся снова в атомы или изотопы, но уже других химических элементов. Те части, что помельче, будут стремиться при любом подходящем случае состыковаться между собой в конце концов также замкнуться в кольцо. Но а те мелкие обрывки, что не смогли этого сделать, так и останутся сами собой. Можно даже представить, как ведут себя эти неприкаянные куски вращающихся шнуров: испытывая крайнюю продольную неустойчивость, они будут извиваться подобно червям. О них можно сказать еще то, что их форма и поведение соответствуют магнитной силовой линии.
Самыми мелкими частями разорванных атомов будут электроны. Если же и они окажутся разрушенными, то ничего кроме квантов света от них, как мы уже говорили, не останется. Все эти виды обрывков атомов в огромных количествах извергаются Солнцем и как ветер разносятся по космосу; часть этого солнечного ветра достигает Земли и оседает в верхних слоях её атмосферы.
2. Космические метазавихрения эфира
О движениях эфира в космических масштабах, то есть во Вселенной, а точнее говоря, в Видимом пространстве, уже вскользь говорилось: мы сравнивали поведение Эфирного Облака с поведением обычного летнего грозового облака. Вернемся к этому вопросу ещё раз и рассмотрим его более внимательно. Нашей целью должно стать уяснение законов космического бытия на основе эфирной теории. Будем иметь в виду, что всё Видимое пространстве заполнено прозрачной, очень текучей и очень плотной жидкостью, именуемой эфиром, а все видимые космические объекты, в частности звёзды, — лишь относительно мелкие вкрапления в эту жидкость; их расположение и их перемещения свидетельствуют о внутреннем состоянии нашего Эфирного Облака; не будь их — и мы никак не смогли бы зарегистрировать течения той прозрачной жидкости, какой является эфир. Так по перемещению плавающего мусора мы судим о течении воды в реке или по кружащимся сухим листьям — о воздушных вихрях: ни саму воду, ни, тем белее, воздух при этом мы не видим.
2.1 Галактические формообразования
Галактические скопления являются наиболее крупными формообразованиями Видимого пространства; о их размерах можно судить только в сравнениях: одна наша родная Галактика, куда входит мельчайшей частицей вся Солнечная система, составляет менее одной миллиардной части всех галактик. Структура галактических скоплений отражает как раз те процессы, которые происходили и происходят в настоящее время в Космосе.
Человеку, не искушённому в астрономии, звёздное небо почти ни о чём не говорит: он видит в нём равномерно распределённые мириады мерцающих звезд, и всё; выявить среди них определённый порядок или какие-либо особенности он не может. Но астрономы читают небо как книгу; и то, что касается галактических скоплений, приведено ими в систему.
По внешнему виду галактики разделены астрономами на эллиптические, спиральные, линзовидные и неправильные. Объяснить трансформацию этих форм можно только исходя из эфирной теории. Любые столкновения нашего Эфирного Облака с другими облаками, происходившими ранее и происходящими в настоящее время порождали и порождают самые различные формообразования; роднит их текучесть эфира: достаточно представить, что видимые нами звёзды плавают в эфире, и сразу становятся понятными, казалось бы, самые замысловатые формы звёздных скоплений.
Проведём такой опыт: в большей чан с водой будем подливать малыми порциями подкрашенную жидкость; ещё лучше, если подливаемые жидкости будут иметь различные цвета, и станем наблюдать за потоками; струи подкрашенных жидкостей будут перемешиваться между собой и с прозрачной водой самым замысловатым образом. Наверняка среди всевозможных формообразований мы обнаружим и эллиптические, и спиральные, и линзовидные, но будут там, скорее всего, и неправильные формы. Видоизменения внутренних течений будут определяться целым рядом факторов, таких как направление потоков при столкновениях, объём и энергия подливаемых порций, наложение течений и другие, — и будут они в большей степени случайными, чем закономерными. И тем не менее все потоки со временем как-то стабилизируются и приобретут свои характерные очертания.
То же самое происходит и в Космосе, где каждая галактика может рассматриваться как результат когда-то произошедшего столкновения эфирных облаков. По характерным особенностям галактик можно судить об относительном времени их рождения, об энергии столкновения в момент их возникновения и о других паспортных данных.
Эллиптические галактики имеют не очень чёткие эллиптические формы с разбросом от сферических до сильно вытянутых. Более того, фотометрические исследования показали, что они вообще не являются эллипсоидами вращения, а больше похожи на трёхосные эллипсоиды. Нечёткая геометрия форм говорит о том, что в них не сказываются центробежные и центростремительные силы, и это подтверждают спектроскопические исследования: вращаются они довольно медленно. Инерционные массы эллиптических галактик составляют от 100 миллионов до 10 триллионов масс Солнца; самые крупные из них выглядят как изолированные объекты в Видимом пространстве. Их звезды имеют красноватый цвет и относятся к типу красных гигантов. Содержание тяжёлых химических элементов в них больше, чем в звёздах нашей Галактики. Среди эллиптических галактик встречаются и такие, у которых межзвёздное пространстве заполнено больше обычного газом и пылью и которые выделяются своим мощным радиоизлучением. Всё это говорит о том, что эллиптические галактики относятся к разряду относительно молодых. Лишним доказательством этого является то, что новые звёзды в них в настоящее время не образуются, то есть еще не пришло их время.
Старше эллиптических кажутся линзовидные галактики; их форма занимает как бы промежуточное положение между эллипсоидами и спиральными образованиями, то есть они уже раскрутились до линзовидности, но ещё не выродились в спирали с рукавами. Их звезды относятся также к разряду красных гигантов; красноватыми выглядят и сами галактики. Красноватый цвет свидетельствует о наличии в межзвёздном пространстве газа и пыли и о начальной стадии горения звёзд. Звездообразование в линзовидных галактиках не отмечено; значит, они ещё находятся в зоне с большой и стабильной избыточной плотностью эфира, и по этой причине их никак нельзя отнести к старым галактикам.
Больше всего нас должны интересовать спиральные галактики, так как в одной из них, а именно — в Млечном Пути, расположена наша Солнечная система. По всем данным Млечный Путь, как и другие спиральные галактики, не относится к молодым галактикам, об этом говорит его развитая спиральная форма с рукавами. Он представляет собой вращающийся диск диаметрам около 100 000 световых лет; толщина диска — около 1000 световых лет. Звёзды диска движутся по концентрическим орбитам; скорости их движений распределяются следующим образом: чем ближе к центру, тем они меньше; но при удалении от центра растут только до определённого значения, а дальше сохраняются постоянными. Такое распределение скоростей не относит Млечный Путь к завихрениям типа водоворота, а это значит, что характерные для вращения центробежные и центростремительные силы из-за своей малости практически никак не определяют формы спиральных галактик, и в том числе — Млечного Пути. Характером своих скоростей они больше напоминают завихрения эфира, создаваемые электромагнитными катушками.