KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Георгий Покровский - Наука и техника в современных войнах

Георгий Покровский - Наука и техника в современных войнах

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Георгий Покровский, "Наука и техника в современных войнах" бесплатно, без регистрации.
Перейти на страницу:

Несомненно, этим не ограничивается роль машинной математики в военном деле. В дальнейшем следует предвидеть еще более широкое введение счетных машин и в другие области военного дела, в частности в финансовую службу и службу материального обеспечения армии и флота.

Математическая культура и военное дело в течение веков были тесно связаны друг с другом. Например, известный академик Леонард Эйлер на старости лет вспоминал, что, попав в Петербург петровского времени неопытным юношей, он очень многим в своем развитии обязан тем «артиллерийским опытам», в которых он участвовал в начале своей ученой карьеры. Прекрасными примерами математиков, решавших военно-технические проблемы нашего времени, являются такие люди, как академики А. Н. Крылов и А. Н. Колмогоров.

Физика, или, точнее, большой комплекс наук о движении элементарных частиц и преобразованиях энергии, тоже играет большую роль в военном деле. Можно уверенно утверждать, что в настоящее время физика является основой всего естествознания и техники. Только то, что исследовано физикой и приобщено ею к основным законам движения материи, может быть успешно использовано в производстве, в сельском хозяйстве, на транспорте и в военном деле. Наоборот, новые явления природы, открываемые той же физикой, не могут быть немедленно использованы на практике. Требуется предварительно тщательно изучить их, поставить в связь с другими смежными областями движения материи, и только тогда вновь открытые силы природы начинают послушно служить человеку. Поэтому знание только общей физики не обеспечивает еще полной возможности использования ее на практике. Необходимо наряду с физикой изучать и специальные технические науки, знакомиться с практикой и на этой основе применять общие знания в области физики и математики.

В военном деле физика наряду с техническими науками прежде всего нужна для того, чтобы правильно понимать действие военной техники. Однако значение физики далеко выходит за пределы этой задачи. Вся обстановка, в которой происходят боевые действия, — погода, видимость, проходимость местности, защитные свойства местности, маскировка и разведка, использование подручных средств и многое другое — может быть наилучшим способом понята и использована только тогда, когда ясны физические основы соответствующих процессов.

Кроме этого, физика имеет большое значение и в том отношении, что она является звеном, соединяющим математические количественные методы с экспериментальным изучением процессов, протекающих в природе и технике. Физика учит, как строгую последовательность математических выводов можно найти в бесконечно сложном и с первого взгляда противоречивом, хаотическом движении окружающей нас материи. Остроумнейшие и точные методы физического эксперимента являются отличной школой познания сил природы и управления этими силами.

В настоящее время, как известно, в капиталистических армиях создается все больше и больше специальных воинских частей, занимающихся новой техникой. В этих частях овладение сложными специальными методами физических исследований и измерений становится неотъемлемой и важной частью боевой подготовки всех военнослужащих. Поэтому физика, как основа техники, представляет для армии двойной интерес: во-первых, как основа всякой техники и как основа для правильного понимания явлений природы, имеющих значение в военном деле; во-вторых, как элемент, входящий в пределы непосредственных задач, возникающих при освоении армией новых средств борьбы.

Рассмотрим несколько подробнее значение различных областей физики в военном деле.

Обычно в качестве первого, вводного раздела физики рассматривают механику, или, точнее, физические основы механики. История показывает, что в течение многих веков взаимодействие механики и военного дела было плодотворным. Начиная с XVI–XVII веков решение артиллерийских задач было одним из основных приложений механики и давало многочисленные импульсы к развитию этой науки. Механика имеет своей задачей исследование и практическое приложение различных форм механического перемещения тел в пространстве. В частности, к механике относятся такие военно-технические науки, как внутренняя и внешняя баллистика. Внутренняя баллистика, как известно, исследует способы сообщения телам высоких скоростей путем преобразования химической энергии, заключенной в пороховом заряде, в механическую.

Очень большое значение для метания тел имеет реактивное движение и теория реактивных двигателей и ускорителей, тесно связанная с механикой тел переменной массы. В настоящее время различные области баллистики совместно с таким разделом астрономии, как небесная механика, стали находить очень широкое применение при создании и освоении ракет дальнего действия. Эти ракеты поднимаются уже при современных условиях на высоту в сотни километров и в течение некоторого времени движутся в космическом пространстве, уподобляясь небольшим небесным телам, а потом, наподобие метеоритов, с огромной скоростью возвращаются через атмосферу земного шара обратно к поверхности земли.

Сейчас человечество стоит на заре завоевания космического пространства, как полвека тому назад оно стояло перед проблемой завоевания атмосферы. Прошедшие полвека с полной очевидностью показали, что борьба за воздух стала одной из основных задач вооруженных сил. Несомненно, что главнейшие усилия авиационных ученых и конструкторов были направлены при этом не на решение задач гражданской авиации, а на развитие средств вооруженной борьбы за господство в воздухе.

Громадные научные проблемы связаны прежде всего с вопросом о создании скоростей движения тел, равных нескольким километрам в секунду. Так, например, для устойчивого полета вокруг земного шара требуется получить на высоте в несколько сотен километров над поверхностью земли скорость 8 километров в секунду. Для ухода в космическое пространство необходима скорость 11,2 километра в секунду.

Обычная артиллерия может обеспечить начальные скорости примерно до двух километров в секунду. Одноступенчатая ракета с жидкостным реактивным двигателем может иметь максимальную скорость порядка нескольких километров в секунду. Если ракета многоступенчатая, то есть состоит из нескольких частей, каждая из которых выбрасывается вперед, когда предыдущее звено достигло заданной скорости, то максимальная скорость может достигнуть 8—11 километров в секунду, то есть окажется достаточной для космических полетов (рис. 3).

Рис. 3. Принципиальная схема четырехступенчатой межконтинентальной ракеты.


Этим путем, как известно, была создана первая советская межконтинентальная ракета, успешно прошедшая испытания в августе 1957 года (см. сообщение ТАСС от 27 августа 1957 года).

Эта ракета успешно применялась для вывода на орбиту первых советских искусственных спутников Земли.

Другим путем получения сверхвысоких скоростей является кумулятивный взрыв. При помощи кумулятивного взрыва возможно получить в технически сравнительно простых условиях очень высокие скорости, доходящие до десятков километров в секунду, далеко превосходящие те пределы, которые необходимы для космических полетов. Однако метание взрывом связано с появлением в метаемой массе огромных напряжений. Поэтому такой путь непригоден для направления в космическое пространство объектов, несущих на себе более или менее сложные приборы и устройства. Во всяком случае, очевидно то, что в настоящее время наука располагает всеми предпосылками, необходимыми для проникновения человека в космическое пространство, и его завоевание уже началось. Перспективы этого завоевания могут быть ясны только при изучении соответствующих физических основ, и в первую очередь механики и ее разделов — баллистики и небесной механики. Значительную роль имеет здесь также астрофизика, изучающая физические процессы на звездах и планетах и в космическом пространстве. Эти науки стали очень быстро развиваться в результате успешных полетов искусственных спутников и космических ракет.

Более сложными разделами механики являются гидродинамика, изучающая движение жидкостей, и газовая динамика, изучающая движение газов с учетом их сжимаемости при изменении давления и соответствующего изменения температуры. Разделом газовой динамики является аэродинамика, то есть наука о движении воздуха и тел в воздухе. В аэродинамике в настоящее время имеют огромное значение так называемые зазвуковые движения, то есть такие, когда тело движется в воздухе со скоростью, превышающей скорость звука, которая равна примерно 1200 километрам в час. Научное исследование такого движения было начато более полувека тому назад С. А. Чаплыгиным и рядом других ученых. Но только теперь, в послевоенное время, выявилось в полной мере значение этих исследований, когда боевые реактивные самолеты достигли на практике скоростей, превосходящих скорость звука.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*