KnigaRead.com/

Джеймс Глейк - Хаос. Создание новой науки

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Джеймс Глейк, "Хаос. Создание новой науки" бесплатно, без регистрации.
Перейти на страницу:

Но стоит увеличить температуру, как поведение системы меняется. По мере нагревания жидкости она расширяется снизу, становится менее плотной, что, в свою очередь, влечет уменьшение ее массы, достаточное, чтобы преодолеть трение; в результате вещество устремляется к поверхности. Если конструкция сосуда хорошо продумана, в нем появляется цилиндрический завиток, в котором горячая жидкость поднимается по одной из стенок, а охлажденная спускается по противоположной.


Рис. 1.2. Движение жидкости. Когда жидкость нагревают снизу, то в ней обычно образуются цилиндрические завитки (слева). Поднимаясь по одной стенке сосуда и спускаясь затем по противоположной, жидкость теряет теплоту — наблюдается конвекция. В случае продолжения этого процесса возникает нестабильность, влекущая за собой колебания в завитках жидкости, идущие в двух направлениях по всей длине цилиндров. При повышении температуры поток становится бурным и беспорядочным.


Понаблюдав за сосудом, можно проследить непрерывный цикл таких перемещений. Вне лабораторных стен сама природа создает области конвекции. К примеру, когда солнце нагревает песчаную поверхность пустыни, перемещающиеся воздушные массы могут сформировать миражи высоко в облаках или вблизи земли.

С дальнейшим ростом температуры поведение жидкости еще больше усложняется: в завитках зарождаются колебания. Уравнения Лоренца были слишком примитивными для их моделирования, описывая лишь одну черту, характерную для конвекции в природе, — кругообразное перемещение нагретой жидкости, показанное на рис. 1.2. В уравнениях учитывалась как скорость такого перемещения, так и теплопередача; и оба физических процесса взаимодействовали. Подобно любой циркулирующей частице горячей жидкости, жидкое вещество в нашем опыте, взаимодействуя с менее нагретой субстанцией, утрачивает теплоту. Однако, если движение жидкости происходит достаточно быстро, она не потеряет всю избыточную тепловую энергию за один цикл перемещений «дно —> поверхность —> дно», и в этом случае в ней могут образоваться завихрения.

Оказалось, что система Лоренца имеет аналоги в реальном мире, даже не отражая полностью процесс конвекции. К примеру, уравнения Лоренца достаточно точно описывают функционирование уже вышедшей из употребления электрической динамо-машины, предшественницы современных генераторов, где ток течет через диск, вращающийся в магнитном поле. В определенных условиях динамо-машина может дать обратный ход. Некоторые ученые, ознакомившись с уравнениями Лоренца, предположили, что, быть может, поведение динамо прольет свет на другой специфический феномен — магнитное поле Земли. Известно, что так называемая гео-динамо-машина давала о себе знать много раз в истории планеты. Интервалы между этими явлениями казались странными и необъяснимыми. Столкнувшись с подобной беспорядочностью, теоретики, как правило, искали решение вне рамок конкретной системы, выдвигая предположения вроде гипотезы метеоритных дождей.

Другой системой, вполне точно описываемой уравнениями Лоренца, является водяное колесо определенного типа, механический аналог вращающихся конвекционных кругов. Вода постоянно льется с вершины колеса в емкости, закрепленные на его ободе, а из каждой емкости она вытекает через небольшое отверстие. В том случае, когда поток воды мал, верхние емкости заполняются недостаточно быстро для преодоления трения. Если же скорость водяной струи велика, колесо начинает поворачиваться под воздействием веса жидкости и вращение становится непрерывным. Однако, коль скоро струя сильна, черпаки, полные воды, некоторое время колеблются внизу, а затем начинают стремиться в другую сторону, таким образом замедляя движение, а затем останавливая колесо; и в дальнейшем оно меняет направление движения на противоположное, поворачиваясь сначала по часовой стрелке, а потом — против нее.


Рис. 1.3. Водяное колесо Лоренца. Первая хаотическая система, обнаруженная Эдвардом Лоренцем, точно соответствует механическому устройству — водяному колесу, которое может вести себя удивительно сложным образом. Вращающееся колесо имеет те же свойства, что и вращающиеся в процессе конвекции цилиндры жидкости: колесо похоже на их поперечные сечения. Обе системы регулируются (потоком воды или теплоты), и обе рассеивают энергию. Жидкость утрачивает теплоту; вода выливается из черпаков колеса. Долгосрочное поведение обеих систем зависит от того, насколько велика управляющая ими энергия. Вода наливается сверху с постоянной скоростью. Если скорость ее небольшая, верхний черпак никогда не становится полным, трение не преодолевается и колесо не поворачивается. (Подобное явление наблюдается и в жидкости: если теплоты недостаточно, чтобы преодолеть вязкость, жидкость останется неподвижной.) С увеличением скорости водяного потока колесо начинает двигаться под тяжестью верхнего черпака (слева) и даже вращаться с постоянной скоростью (в центре). Однако при чрезмерной скорости воды (справа) вращение колеса может стать хаотичным из-за нелинейных воздействий, появившихся в системе. Черпаки, проходя под водяным потоком, наполняются в зависимости от того, насколько быстро вращается колесо. При быстром вращении колеса им не хватает времени, чтобы наполниться. (Так же и жидкости в быстровращающихся конвекционных завитках недостает времени, чтобы поглотить теплоту.) Кроме того, емкости могут начать двигаться в обратную сторону, не заполнившись водой. В результате полные черпаки на движущейся вверх стороне колеса способны замедлить вращение всей системы, а затем вызвать ее поворот в обратную сторону. Фактически Лоренц обнаружил, что в течение длительных периодов времени вращение может менять свое направление несколько раз, никогда не достигая постоянной скорости и никогда не повторяясь каким-либо предсказуемым образом.


Интуиция подсказала Лоренцу, что за длительный период времени при неизменном потоке воды система обретет устойчивое состояние. Колесо будет или равномерно вращаться, или постоянно колебаться в двух противоположных направлениях, покачиваясь через определенные неизменные промежутки времени сначала вперед, затем назад. Но Лоренц обнаружил еще одно обстоятельство.

Три уравнения с тремя переменными полностью описывали движение данной системы. Компьютер ученого распечатал меняющиеся значения этих переменных в следующем виде: 0-10-0; 4-12-0; 9-20-0; 16-36-2; 30-66-7; 54-115-24; 93-192-74. Числа в наборе сначала увеличивались, затем уменьшались по мере отсчета временных интервалов: пять, сто, тысяча…

Чтобы наглядно изобразить полученные результаты, Лоренц использовал каждый набор из трех чисел в качестве координаты точки в трехмерном пространстве. Таким образом, последовательность чисел воспроизводила последовательность точек, образующих непрерывную линию, которая фиксировала поведение системы. Эта линия должна была, начиная с определенной точки, расположиться параллельно осям координат, что означало бы достижение системой устойчивости при стабилизации скорости и температуры. Был возможен и второй вариант — формирование петли, повторяющейся вновь и вновь и сигнализирующей о переходе системы в периодически повторяющееся состояние.

Но Лоренц не обнаружил ни того ни другого. Вместо ожидаемого эффекта появилось нечто бесконечно запутанное, всегда расположенное в определенных границах, но никогда и не повторявшееся. Изгибы линии приобретали странные, весьма характерные очертания, что-то похожее на два крыла бабочки или на двойную спираль в трехмерном пространстве. И эта форма свидетельствовала о полной неупорядоченности, поскольку ни одна из точек или их комбинаций не повторялась.


Спустя годы физики еще обсуждали публикацию Лоренца — «эту замечательную, необыкновенную статью!», — и в их глазах появлялась задумчивость. О его работе говорили так, словно она представляла собой древний манускрипт, хранивший секреты вечности. Из тысяч статей, составивших специальную литературу о проблеме хаоса, вряд ли какая-либо цитировалась чаще, чем Лоренцов «Детерминистский непериодический поток». В течение многих лет ни один феномен не изображался столь бессчетное количество раз, ни об одном не сняли столько фильмов, сколько о таинственной кривой, описанной в этой главе, — двойной спирали, известной как «аттрактор Лоренца». Она воплощала в себе сложность и запутанность, все многообразие хаоса.

Но это во времена Лоренца ощущали немногие. Он рассказал о своих опытах Виллему Малкусу, профессору прикладной математики Массачусетского технологического института, который слыл человеком весьма тактичным и способным оценить по достоинству работу коллег. Малкус, рассмеявшись, произнес: «Эд, мы знаем, знаем доподлинно, что в жидкости ничего подобного не происходит». По его мнению, всю беспорядочность следовало свести к нулю, чтобы система вернулась к стабильному постоянному движению.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*