Владимир Кирсанов - Научная революция XVII века
Под руководством Схоутена Гюйгенс изучал классическую математику, в частности работы Аполлония по коническим сечениям, и самостоятельно Архимеда, которым он особенно восхищался. Много внимания он уделял и современным методам, внимательно читая Виету, Ферма и Декарта. Отношения учителя и ученика перешли впоследствии в теплую дружбу, не прерывавшуюся до самой смерти Схоутена в 1660 г. Надо сказать, что многие математические результаты Гюйгенса часто становились известны ученому сообществу именно благодаря Схоутену, всегда находившемуся в курсе исследований своего бывшего ученика. Вообще, обстановка для развития талантов молодого исследователя была очень благоприятной; Схоутен был не единственным его наставником: по-прежнему Константин Гюйгенс не упускал сына из сферы своего пристального внимания, и Мерсенн, с которым Константин постоянно переписывался, начал присылать через отца математические задачи, предназначаемые Христиану.
В октябре 1646 г. Мерсенн заинтересовался решением задачи о падении тел, принадлежащим молодому Гюйгенсу, о котором сообщил ему Гюйгенс-отец, и с этого времени началась переписка между Мерсенном и самим Христианом, которая продолжалась до самой смерти Мерсенна. Эта переписка оказала очень большое влияние на формирование научных интересов Гюйгенса и определила многие его творческие начинания. Так, Мерсенн познакомил Христиана с задачей о квадратуре круга, связанной с расчетом точного положения центра тяжести, привлек внимание к опытам по определению скорости звука и по расширению воздуха в пустоте, поставил перед ним проблему об определении центра качаний. Решение этой последней задачи составило в дальнейшем одно из главных достижений механики Гюйгенса. Вот как сам он вспоминал об этом: «Когда я был еще почти мальчиком, ученейший муж Мерсенн задал мне и многим другим задачу — определить центр качаний... Мерсенн поставил мне задачу нахождения центров качания круговых секторов, подвешенных или в центре, или в середине дуги и могущих совершать боковые качания... При этом Мерсенн назначил большую, вызывающую зависть премию, если я решу задачу. Однако он тогда ни от кого не получил того, что требовал» [15, с. 119].
Решение задачи о центре качаний Гюйгенс смог получить лишь спустя 20 лет, а пока он заканчивает учебу в Лейденском университете (1645—1647), затем еще два года проводит в только что организованной «Оранской коллегии» в Бреде (где его отец был одним из трех кураторов), все более убеждаясь при этом, что его истинным призванием являются естественные науки. Поэтому после окончания учебы Христиан решает не следовать семейной традиции в выборе профессии и вместо дипломатической карьеры полностью посвятить себя изучению природы. Впрочем, со смертью Вильгельма II в 1650 г. и с приходом к власти противников дома Оранских, партии крупной буржуазии, возможность дипломатической карьеры для Гюйгенса сильно уменьшилась. Как бы то ни было, Христиан возвращается в дом своих родителей в Гаагу, где проводит все последующие 16 лет (1650—1666), за исключением трех поездок в Лондон и Париж. Для его творчества эти годы оказались наиболее плодотворными.
Общеизвестно, что большое влияние на молодого Гюйгенса оказали философия и математика Декарта. Со слов отца, который преклонялся перед Декартом, Христиан впервые узнал о представлениях великого француза, а впоследствии он внимательно проштудировал его опубликованные труды. «Когда я читал „Начала" в первый раз, мне казалось, что все идет наилучшим в мире образом, и когда встречались затруднения, я обвинял себя в том, что плохо понимаю его некоторые мысли. Мне было только 15—16 лет», — писал он спустя много лет.
Декарт, находясь в постоянном общении с Константином Гюйгенсом и Мерсенном, был прекрасно осведомлен о талантах молодого Гюйгенса и пророчил ему блестящее будущее. Начало научной деятельности Гюйгенса совпало со смертью Декарта — стремясь избежать волнений, вызванных все усиливавшейся активностью противников картезианства в Голландии, Декарт принял предложение королевы Христины и переехал в Швецию, однако суровый климат Стокгольма оказался губительным для него, и вскоре после приезда в Швецию 11 февраля 1650 г. он умер от воспаления легких. Гюйгенс откликнулся на его смерть взволнованными стихами:
Душа, которая в столь мудрости великой
Являла разуму сокрытое от глаз,
Создав миров картины разноликих,
Ушла, покинув мир земной и нас.
Декарт... Природою он первый был оплакан,
В своем отчаяньи склонившейся пред ним.
В последний час угас священный факел,
Но ярче вспыхнул свет идей, рожденных им [14, с. 48].
Многое восприняв от Декарта, Гюйгенс в главных своих методах оставался верен античным традициям. Недаром так часто историки науки подчеркивают его связь с Архимедом, труды которого он увлеченно изучал и логике которого стремился следовать. Мерсенн был, по-видимому, первым, кто соединил эти два имени, когда в начале 1647 г. написал Гюйгенсу: «Я молю Бога, мсье, хранить Вас весь этот год в превосходном здравии, а также чтобы Вы стали Аполлонием и Архимедом наших дней или даже грядущего века» [16, с. 34].
Первые работы Гюйгенса продолжали исследования Архимеда. Имеются в виду его работы «О квадратуре круга» и работы по гидростатике, которые в 1650 г. были сведены в рукопись под названием «О плавающих телах». В ней Гюйгенс основывается на утверждении, что механическая система находится в равновесии, если центр тяжести занимает наинизшее из всех возможных положений. В этой работе закон Архимеда не постулируется, а выводится из приведенного выше утверждения, а также доказывается, что плавающее тело находится в равновесии, если расстояние между центром тяжести всего тела и центром тяжести части, погруженной в воду, минимально. Затем Гюйгенс определяет условия плавания тел вращения в вертикальном положении, а также центр тяжести различных фигур — косо срезанных параболоидов вращения, конусов и цилиндров.
После гидростатики Гюйгенс продолжает свои исследования по механике и в 1652 г. обращается к теории удара. Начало этим работам было положено в результате размышлений над теорией удара Декарта. Если раньше ему казалось, что непонятность некоторых мест у Декарта обусловливается его собственным незнанием, то теперь он подходил к этому критически, и естественно, что декартовы правила соударения его не удовлетворили, поскольку они не согласовывались с опытом. Результаты исследований были представлены в рукописном трактате 1656 г., называвшемся «О движении тел под действием удара», который при жизни Гюйгенса не был опубликован и появился лишь в 1703 г. в сборнике его посмертных трудов. Тем не менее его теория удара стала хорошо известна при его жизни, так как в 1668 г. наиболее важные теоремы он представил Королевскому обществу, а в следующем году опубликовал их без доказательства в «Journal des Scavans». Мерой движения у Декарта была характеристика, пропорциональная величине тела и абсолютной величине его скорости. Выражаясь современным языком, можно сказать, что количество движения понималось им как m|v|. Гюйгенс в противоположность Декарту утверждал, что понимаемое в таком смысле количество движения не сохраняется. Об этом он ясно пишет в Предложении VI: «Когда два тела соударяются, то не всегда сохраняется количество движения, бывшее в обоих до удара, оно может уменьшиться или увеличиться» [15, с. 223].
Но если количество движения понимать как mv(→),
то имеет место закон сохранения, который Гюйгенс позднее формулирует следующим образом: «Количество движения, которое имеют два тела, может увеличиваться или уменьшаться при столкновении; но его величина остается постоянной в ту же сторону [в том же направлении], если мы вычтем количество движения обрат-го направления» [15, с. 366]. Затем этот принцип получает у него другую, ныне общеизвестную формулировку: «Кроме того, я заметил удивительный закон природы, который я могу доказать для сферических тел и который, по-видимому, справедлив и для всех других тел, твердых и мягких, при прямом и при косом ударе: общий центр тяжести двух или трех или скольких угодно тел продолжает двигаться равномерно в ту же сторону по прямой линии как до, так и после удара» [15, с. 366].
В рукописи первая формулировка дается в расплывчатой форме Предложения VI, а вторая и вовсе отсутствует; по-видимому, Гюйгенс не решался провозгласить векторную величину mv(→) истинной мерой количества движения и ограничился, если можно так сказать, полумерой. Поэтому его изложение проблемы удара по сравнению с современным вывернуто наизнанку, хотя, наверно, такой путь более оправдан интуитивно, т. е. он сначала доказывает специальный случай столкновения (Предложение VIII), затем распространяет его с помощью принципа относительности на общий случай и лишь потом, как следствие этого общего закона удара, получает некоторые законы сохранения. Сегодня мы поступаем в точности наоборот: а именно, законы удара выводятся из аксиоматических законов сохранения.