KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Стивен Вайнберг - Объясняя мир. Истоки современной науки

Стивен Вайнберг - Объясняя мир. Истоки современной науки

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Стивен Вайнберг, "Объясняя мир. Истоки современной науки" бесплатно, без регистрации.
Перейти на страницу:

Сохранившееся со времен античности свидетельство о самой ранней попытке доказать, что существует лишь пять правильных многогранников, имеется в финальной, кульминационной части «Начал» Евклида. В предложениях 13–17 книги XIII Евклид описывает геометрическое строение тетраэдра, октаэдра, куба, икосаэдра и додекаэдра. Затем он пишет: «Вот я утверждаю, что, кроме упомянутых пяти тел, нельзя построить другого тела, заключенного между равносторонними и равноугольными равными друг другу <многоугольниками>»[27]. На самом деле после этого утверждения Евклид доказывает более узкую теорему о том, что в правильном многограннике существует только пять возможных комбинаций количества сторон n у каждой многоугольной грани и количества N смежных в каждой вершине многоугольников. Ниже приведено доказательство, аналогичное евклидову, но с использованием современной терминологии.

На первом шаге необходимо рассчитать внутренний угол θ (тета) каждой из n вершин n-стороннего правильного многоугольника. Проведем лучи из центра многоугольника к каждой из его вершин. В результате многоугольник окажется разделен на n треугольников. Поскольку сумма углов треугольника равна 180° и в каждом из этих треугольников есть по два угла, равных θ/2, то угол при третьей вершине, совпадающей с центром многоугольника, равняется 180° – θ. Так как n таких углов должны составлять полный угол 360°, то n (180° – θ) = 360°. Решая это уравнение, получаем:



К примеру, для равностороннего треугольника имеем: n = 3, поэтому θ = 180° – 120° = 60°, тогда как для квадрата n = 4, и θ = 180° – 90° = 90°.

На втором шаге представим себе, что мы отрезали от нашего многогранника все грани, ребра и вершины, кроме тех, которые примыкают к какой-то одной выбранной вершине. Теперь то, что получилось, мысленно поставим на плоскость и «раздавим», нажав на эту вершину. Теперь N многоугольников, которые смыкались (были смежными) в этой вершине, окажутся лежащими на плоскости, но между ними должно остаться пустое место – в противном случае, если бы они покрывали полный угол, N многоугольников формировали бы слитную плоскую фигуру. Поэтому очевидно, что справедливо неравенство: Nθ < 360°. Подставив вместо θ приведенную выше формулу и поделив обе части неравенства на 360°, получаем:



или, что то же самое (если обе части разделить на N):



Учтем, что должно выполняться условие n ≥ 3, поскольку это минимальное количество вершин для многоугольника, и также должно выполняться неравенство N ≥ 3, так как иначе в многограннике не оставалось бы места между смежными при вершине многоугольными гранями (например, для куба n = 4, потому что грани квадратные, а N = 3). Поэтому вышеприведенное неравенство не позволяет ни отношению 1/n, ни отношению 1/N быть слишком малым, например, 1/2 – 1/3 = 1/6. Соответственно, ни n, ни N не могут быть равными или больше 6. Зная это, легко проверить все возможные комбинации целых чисел в диапазонах 5 ≥ N ≥ 3 и 5 ≥ n ≥ 3 на соответствие неравенству и обнаружить, что есть только пять таких комбинаций:



(В случаях, когда n равняется 3, 4 и 5, мы имеем стороны правильного многогранника, которые являются равносторонними треугольниками, квадратами и пятиугольниками соответственно.) Именно эти значения N и n присутствуют в тетраэдре, октаэдре, икосаэдре, кубе и додекаэдре.

Вот и все, что доказал Евклид. Но он не доказал, что существует лишь по одному правильному многограннику для каждой возможной пары n и N. Теперь мы пойдем дальше Евклида и покажем, что для каждой пары значений n и N мы получим по единственной комбинации других свойств многогранника: F – количества граней, E – количества ребер, и V – количества вершин. Как мы видим, есть три неизвестные величины, и значит, чтобы их найти, нам потребуется три уравнения. Чтобы вывести первое, отметим, что общее количество сторон всех многоугольников, образующих поверхность многогранника, равняется nF, но при этом каждая из Е граней является общей границей двух соседних многоугольников, поэтому:

2E = nF.

Также учтем, что N граней пересекаются в каждой из V вершин, и притом каждое из E ребер соединяет две вершины, так что:

2E = NV.

И наконец, есть и еще одно, менее явное, соотношение между величинами F, E и V. Чтобы его вывести, нужно принять дополнительное допущение – пусть наш многогранник является односвязным, то есть любой путь, который можно проложить между двумя различными точками его поверхности, можно непрерывно преобразовать в любой другой путь между теми же самыми точками. Это условие выполняется, например, для куба и тетраэдра, но не для многогранника (неважно, правильного или нет), который получили, разместив его вершины и грани вдоль поверхности тора. Существует сложная теорема, которая доказывает, что любой односвязный многогранник можно получить, если последовательно добавлять новые ребра, грани и/или вершины к тетраэдру, а потом сжать получившуюся фигуру до нужной формы. Зная об этом, мы покажем, что любой односвязный многогранник (правильный или неправильный) удовлетворяет равенству:

F – E + V = 2.

Легко проверить, что равенство удовлетворено для тетраэдра, в случае которого F = 4, E = 6 и V = 4, поэтому в левой части уравнения имеем: 4–6 + 4 =2. Если теперь мы добавим к любому многограннику ребро, секущее какую-либо из его граней от одного ребра до другого, то у нас добавится одна дополнительная грань и две дополнительные вершины, а значит, величины F и V увеличатся на единицу и двойку, соответственно. Но оба из прежних ребер, в которые упирается новое ребро, при этом еще окажутся разбиты на два, и поэтому E увеличится на 1 + 2 =3, и выходит, что соотношение F – E+ V останется неизменным. Точно так же, если мы добавим новое ребро, которое пролегает между какой-либо вершиной и точкой, принадлежащей одному из имеющихся ребер, то мы увеличим F и V на единицу, а E при этом на 2, и значит, формула F – E+ V все равно даст тот же результат. Поскольку любой односвязный многогранник может быть построен произвольной комбинацией этих действий, все получающиеся многогранники должны сохранять то же самое соотношение, то есть для них выражение F – E+ V = 2 будет так же справедливо, как и для тетраэдра (это простой пример того, чем занимается отрасль математики под названием «топология»; в топологии число, выражаемое формулой F – E+ V, называется эйлеровой характеристикой полиэдра, или многогранника).

Теперь мы можем совместно решить все три уравнения для E, F и V. Проще всего использовать первые два уравнения, чтобы заменить F и V в третьем на выражения, соответственно, 2E/n и 2E/N, и, таким образом, третье уравнение выражается в форме 2E/N – E +2E/N =2, что дает



Далее из двух других уравнений получаем:



И теперь для пяти вышеперечисленных случаев количество граней, вершин и ребер будет равно:



Это и есть платоновы тела.

3. Гармония

Пифагорейцы открыли, что две струны щипкового музыкального инструмента одной и той же толщины, сделанные из одинакового материала и одинаково сильно натянутые, когда их щипают одновременно, производят приятный слуху звук, если отношение длин двух таких струн выражается как дробь с небольшим целым числителем и знаменателем – например, 1/2, 2/3, 1/4, 3/4 и т. д. Чтобы понять, почему так происходит, сперва нам нужно выяснить, как связаны друг с другом частота, длина и скорость распространения для любого вида волн.

Любая волна – это процесс распространения колебаний. В случае акустической (звуковой) волны в воздухе распространяются колебания давления воздуха, в случае волны на поверхности моря распространяются колебания толщины воды, в случае световой волны определенной поляризации колеблется вектор напряженности электрического поля, а в случае волны, бегущей вдоль струны, распространяются колебания частиц струны, отклоняющихся от положения равновесия в направлении, перпендикулярном самой струне. Максимальное абсолютное отклонение колеблющейся величины от равновесного значения называется амплитудой волны.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*