Норберт Винер - Кибернетика или управление и связь в животном и машине
Из этих двух видов естественного отбора: через разрушение непригодного и через слишком поспешное прохождение по неустойчивому — последний есть единственно возможный при явлениях сохранения, препятствующих простому устранению неустойчивого. Эшби рассматривает весьма сложные машины, в которых элементы соединены между собой более или менее случайным образом, так что мы знаем кое-что о статистике соединений и очень мало о деталях таковых. Машины эти, вообще говоря, разрушаются очень быстро, если не вводить в них предохранительных элементов, наподобие амплитудных ограничителей в электрических схемах. Действие таких ограничителей придает системе некоторую консервативность. Поэтому машины Эшби стремятся проводить бо́льшую часть своего существования в относительно устойчивых состояниях, а их неустойчивые состояния, хотя и существуют, но так ограничены во времени, что очень мало проявляются при статистическом изучении системы.
Следует помнить, что в явлениях жизни и поведения нас интересуют относительно устойчивые, а не абсолютно устойчивые состояния. Абсолютная устойчивость достижима лишь при очень больших значениях энтропии и по существу равносильна тепловой смерти. Если же система ограждена от тепловой смерти условиями, которым она подчинена, то она будет проводить большую часть своего существования в состояниях, которые не являются состояниями полного равновесия, но подобны равновесным. Иными словами, энтропия здесь не абсолютный, а относительный максимум или, по крайней мере, изменяется очень медленно в окрестностях данных состояний. Именно такие квазиравновесные — не истинно равновесные — состояния связаны с жизнью и мышлением и со всеми другими органическими процессами. [c.312]
Машины с глазами и ушами?Мне кажется, будет вполне в духе д-ра Эшби сказать, что эти квазиравновесные состояния, как правило, суть состояния, при которых имеет место относительно слабый обмен энергией между системой и окружающей средой, но зато относительно большая информационная связь между ними. Системы, рассматриваемые д-ром Эшби, имеют глаза и уши и таким путем получают сведения для приспособления ко внешней среде. Они приближаются к автоматам по своему внутреннему энергетическому балансу, но очень далеки от них по своему внешнему энтропийному, или информационному балансу. Поэтому равновесие, к которому они стремятся, — это равновесие, при котором они хорошо приспособлены к изменениям во внешней среде и в известной степени нечувствительны к таким изменениям. Они находятся в состоянии частичного гомеостаза.
Д-р Эшби конструирует свой гомеостат как прибор, имеющий именно такую связь со внешней средой и обнаруживающий некоторую случайность во внутреннем строении. Такая машина в известной степени может обучаться, т. е. приспособляться формами своего поведения к устойчивому равновесию с окружением. Однако реальные гомеостаты, разработанные пока д-ром Эшби, хотя и способны поглощать информацию из окружения, содержат в своем внутреннем строении количество информации и решений, заведомо превосходящее то, которое проходит через их, так сказать, органы чувств. Короче говоря, эти машины могут обучаться, но они отнюдь не умнее своих создателей или примерно столь же умны. Тем не менее д-р Эшби полагает, что можно действительно создать машины, которые были бы умнее своих создателей; и в этом я с ним совершенно согласен. Количество информации, которое может воспринимать через свои органы чувств прибор, нельзя априори ограничивать теми значениями, при которых требуется не больше решений, чем уже было заложено в структуру прибора. Обыкновенно способность системы поглощать информацию растет на первых порах довольно медленно по сравнению с количеством информации, заложенной в нее. И лишь после того, как заложенная информация перейдет за некоторую точку, [c.313] способность машины поглощать дальнейшую информацию начнет догонять внутреннюю информацию ее структуры. Но при некоторой степени сложности приобретенная информация может не только сравняться с той, которая была первоначально заложена в машину, но и далеко ее превзойти, и с этой стадии сложности машина приобретает некоторые из существенных характеристик живого существа.
Необходима сложностьРассматриваемая ситуация допускает любопытное сравнение с атомной бомбой, с атомным реактором или с огнем в очаге. Если вы попытаетесь построить атомный реактор или атомную бомбу слишком малых размеров или зажечь большое дубовое полено одной спичкой, вы убедитесь, что всякая запущенная вами атомная или химическая реакция угаснет, как только будет удален ее возбудитель, и никогда не будет расти или оставаться на одном уровне. Лишь когда воспламенитель достигнет определенной величины, или в атомном реакторе соберется определенное количество молекул, или масса изотопа урана достигнет определенного взрывного размера, положение изменится, и мы увидим не только мимолетные и неполные процессы. Точно так же действительно существенные и активные явления жизни и обучения начинаются лишь после того, как организм достигнет некоторой критической ступени сложности; и хотя эта сложность, вероятно, достижима при помощи чисто механических, не слишком трудных средств, тем не менее потребуется предельное их напряжение.
Из этого разбора, посвященного лишь некоторым идеям книги д-ра Эшби, можно заключить, что она открывает нам широкий взгляд на новые рубежи мысли. Д-р Эшби, хотя в сущности и обладает сильным математическим воображением, не является в полном смысле профессиональным математиком, и профессиональным математикам надлежит осуществить многие из набросанных им идей. Он не причисляет себя к профессиональным математикам, но он, несомненно, обладает принципиальностью и талантом, и книгу его надо читать как одни из первых плодов на ниве, заслуживающей усердного возделывания. [c.314]
Приложение III.
Кибернетика и человек[210]
(Интервью для советского журнала «Природа»)
Вопрос. Каково Ваше мнение относительно возможности развития математики при помощи машин? Можем ли мы ожидать, что таким путем будут открыты новые теоремы или созданы новые доказательства уже существующих?
Ответ. В настоящее время уже созданы такие машины, которые не только производят сложные вычислительные операции, но также способны проверять и исправлять программу, составленную для этих машин. Можно поэтому сказать, что такие машины, в прямом смысле этого слова, сами себя обучают. Ныне идет работа по созданию таких машин, которые имеют возможность сами открывать новые теоремы из области геометрии или логики. В таком направлении работает, например, д-р Соломон из фирмы ИБМ. Принцип действия таких машин заключается в том, что различные доказательства связываются между собой на основе некоторых заранее установленных критериев. Машина сохраняет только те доказательства, которые этим критериям лучше других соответствуют, и отбрасывает все остальные. Здесь возникает важная проблема, которая интересна с философской стороны. А именно: какое [c.315] соотношение существует между индуктивной и дедуктивной логикой?
Обычно новые теоремы или новые доказательства известных теорем сначала формулируются индуктивным путем, а затем доказываются строго логически, т. е. дедуктивно. В этом направлении работает известный японский математик Ватанабе. Он исходит из общих гипотез, справедливость которых может быть оценена при помощи чисел. Применяя этот метод, Ватанабе в состоянии, сравнивая гипотезы, выбрать те, которые соответствуют данному предположению и которые справедливы также в других аналогичных случаях. Данная ситуация очень похожа на ту, которая возникает при определении оптимальной стратегии в теории игр.
Тут появляется то парадоксальное обстоятельство, что, применяя в этих целях вычислительные машины, мы решает проблемы индуктивной логики при помощи дедуктивной. Этот метод очень важен потому, что он дает нам представление о том, как у человека происходит процесс индукции. Обычно принимается, что индукция по существу состоит в выборе правильного результата из бесконечного числа возможностей. Однако на практике оказывается, что выбор ограничивается только конечным числом возможностей и, что самое удивительное, это число очень мало. Осознание данного факта имеет большое практическое значение.
Вопрос. Известно, что у живых организмов существуют функции, которые с успехом используются в технических устройствах, например принцип обратной связи в автоматике. Каково Ваше мнение, есть ли еще какие-нибудь принципы такого рода?
Ответ. Наши нынешние автоматические машины отличаются тем, что они могут правильно работать лишь в том случае, если они получают от человека необходимую им информацию и в самой точной форме. Это означает, что характер информации, вводимой в машину, в общем смысле должен быть точно и заранее известен человеку. Живые организмы, наоборот, развивают необходимую им информацию благодаря постоянному взаимодействию с природой. Это означает, что возникновение информации в живых организмах есть исторически развивающийся процесс. Мне бы хотелось еще раз подчеркнуть, что речь здесь идет именно о [c.316] взаимодействии и обмене с окружающей средой. Можно сказать, что живые организмы сами себя организуют. Как уже было показано в моих работах, о которых я рассказывал на докладе в Политехническом музее в Москве, такие явления самоорганизации имеют место и в технических устройствах. Примером могут служить электрические генераторы, имеющие несколько различных частот; будучи укрепленными на одной оси, они автоматически принуждаются генерировать на вполне определенной резонансной частоте.