KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Уолтер Левин - Глазами физика. От края радуги к границе времени

Уолтер Левин - Глазами физика. От края радуги к границе времени

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "Уолтер Левин - Глазами физика. От края радуги к границе времени". Жанр: Прочая научная литература издательство -, год -.
Перейти на страницу:

Таким образом, три замечательных астронома – Уэбстер и Мердин из Англии и Болтон из Торонто – разделили между собой честь открытия рентгеновских двойных систем и обнаружения первой черной дыры в нашей Галактике. (Болтон так гордился этим открытием, что даже много лет ездил на машине с номерными знаками Cyg X-1.)

Я всегда считал странным, что эти ученые не получили главного приза за это абсолютно феноменальное открытие. В конце концов, они попали в самую точку целой области науки – и были первыми! Это они обнаружили первую рентгеновскую двойную систему. И это они заявили, что аккретор, вероятно, является черной дырой. Просто отличная работа!

В 1975 году не кто иной, как сам Стивен Хокинг, побился об заклад со своим другом, физиком-теоретиком Кипом Торном, что Cyg Х-1 вовсе не черная дыра, хотя большинство астрономов к тому времени считали именно так. В конце концов, пятнадцать лет спустя Стивен признался, что проиграл, – я думаю, с немалым удовольствием, поскольку значительная часть его работы была связана с черными дырами. Согласно последним и наиболее точным измерениям, масса черной дыры в Cyg Х-1 составляет около пятнадцати солнечных масс (я это знаю из личного общения с Джерри Оросом и моим бывшим студентом Джеффом Мак-Клинтоком).

Если вы человек внимательный, то наверняка сейчас подумали: «Погодите-ка! Вы же говорили, что черные дыры ничего не излучают, что ничто не может покинуть их гравитационное поле. Как же они могут излучать рентгеновские лучи?» Хороший вопрос, и я обещаю позже на него ответить, а пока скажу только: рентгеновские лучи, испускаемые черной дырой, выходят не изнутри горизонта событий – их испускает материя на пути в черную дыру. Черная дыра объяснила то, что мы видели при наблюдении Cyg Х-1, но она не могла объяснить то, что мы наблюдали в форме рентгеновского излучения, исходящего от других двойных звезд. Для этого требовались нейронные двойные звезды, которые и были вскоре открыты благодаря замечательному спутнику «Ухуру».

Состояние дел в рентгеновской астрономии резко изменилось в декабре 1970 года, когда на орбиту вышел первый спутник, использовавшийся исключительно для соответствующих исследований. Запущенный из Кении в седьмую годовщину кенийской независимости, он получил свое имя от слова uhuru, что в переводе с суахили означает «свобода».

«Ухуру» начал в астрофизике революцию, которая продолжается по сей день. Только представьте, что может делать спутник: наблюдения 365 дней в году, двадцать четыре часа в день, при полном отсутствии атмосферы! «Ухуру» имел возможность осуществлять наблюдения разными способами, о которых около полутора десятков лет назад мы могли только мечтать. Чуть больше чем за два года спутник составил карту рентгеновского неба, используя для этого датчики, способные улавливать источники радиации, в 500 раз более слабые, чем Крабовидная туманность, и в 10 тысяч раз слабее, чем Sco X-1. Спутник нашел 339 таких источников (мы же до этого – всего несколько десятков) и составил первую в истории астрономии рентгеновскую карту всего неба.

Освободив нас от ненавистных атмосферных ограничений, спутниковые обсерватории в корне изменили наше представление о Вселенной, потому что благодаря им мы научились видеть глубокий космос – и удивительные объекты в нем – в любой части электромагнитного спектра. Космический телескоп «Хаббл» расширил обзор оптической вселенной, а рентгеновские обсерватории сделали то же самое для вселенной рентгеновской. А в настоящее время существуют еще и гамма-обсерватории, позволяющие наблюдать еще более высокоэнергетическую вселенную.

В 1971 году «Ухуру» обнаружил 4,84-секундные пульсации от Cen Х-3 (в созвездии Центавр). На протяжении однодневного интервала спутник наблюдал десятикратное изменение потока рентгеновского излучения примерно за один час. Период пульсаций сначала уменьшался, а затем увеличивался приблизительно на 0,02–0,04 процента; каждое изменение имело место где-то в течение часа. Все это было чрезвычайно интересно, но сильно озадачивало. Такая пульсация не могла быть результатом вращения нейтронной звезды; их периоды вращения отличаются потрясающей стабильностью. Ни один из известных пульсаров не мог менять свой период пульсации на 0,04 процента в час.

Пазл сложился, когда группа операторов «Ухуру» несколько позже выяснила, что Cen X-3 – двойная система с периодом орбитального движения 2,09 дня, а 4,84-секундные пульсации – следствие вращения аккрецирующей нейтронной звезды. Очевидность этого была поистине ошеломляющей. Во-первых, астрономы ясно видели повторяющиеся затмения (каждые 2,09 дня), когда нейтронная звезда пряталась за звезду-донора, блокирующего рентгеновские лучи. И во-вторых, они смогли измерить доплеровский сдвиг в периоды пульсаций. Когда нейтронная звезда движется по направлению к нам, период пульсации немного короче, а при удалении немного дольше. Эти невероятной важности результаты были опубликованы в марте 1972 года и логично объяснили явления, которые еще в 1971 году казались неимоверно загадочными. Все было точно так, как предсказывал Шкловский относительно Sco X-1: исследуемый объект оказался двойной системой, состоящей из звезды-донора и аккрецирующей нейтронной звезды.

Позднее в том же году группа Джаккони нашла еще один источник с пульсациями и затмениями – Her X-1 (от названия Гекулес). Еще одна рентгеновская двойная система нейтронной звезды!

Это были совершенно потрясающие открытия, в корне изменившие рентгеновскую астрономию и определившие доминирующие в этой области представления на несколько ближайших десятилетий. Рентгеновские двойные чрезвычайно редки: возможно, только одна из ста миллионов двойных звезд в нашей Галактике является рентгеновской двойной. Тем не менее теперь мы знаем о существовании нескольких сотен таких звезд. В большинстве случаев компактный объект, аккретор, представлен белым карликом или нейтронной звездой, но есть по крайней мере два десятка известных систем, в которых аккретором является черная дыра.

Помните 2,3-минутную периодичность, которую моя группа обнаружила в 1970 году (еще до запуска «Ухуру»)? В то время мы понятия не имели, что означали эти периодические изменения. Что ж, теперь мы знаем, что GX 1 + 4 – это рентгеновская двойная с орбитальным периодом около 304 дней, а аккрецирующая нейтронная звезда вращается с периодом примерно 2,3 минуты.

Рентгеновские двойные: как это работает

Когда нейтронная звезда спаривается со звездой-донором нужного размера на нужном расстоянии, она может выдавать потрясающие фейерверки. Где-то там, в бесконечном пространстве, звезды, которых сэр Исаак Ньютон не мог себе даже представить, исполняют прекрасный танец, в то же время неразрывно привязанный к законам классической механики, которые знает и понимает любой студент-естественник.

Чтобы было понятнее, предлагаю начать с очень близкого нам примера. Земля и Луна – двойная система. Если провести линию от центра Земли к центру Луны, на ней будет точка, в которой гравитационная сила, направленная в сторону Луны, равна, но противоположно направлена силе гравитации Земли. Если бы вы там оказались, результирующая сила, действующая на вас, равнялась бы нулю. Если бы вы сделали шаг в одну сторону от этой точки, то свалились бы на Землю, если бы ступили в другую – упали бы на Луну. У этой точки есть имя – внутренняя точка Лагранжа. Конечно, она находится намного ближе к Луне, ведь масса Луны почти в 80 раз меньше массы Земли.

Теперь вернемся к рентгеновским двойным системам, состоящим из аккрецирующей нейтронной звезды и значительно большей звезды-донора. Когда две звезды находятся очень близко друг к другу, внутренняя точка Лагранжа может лежать ниже поверхности звезды-донора. Если это так, то некоторая материя звезды-донора будет испытывать на себе гравитационную силу, направленную к нейтронной звезде, превышающую силы гравитации, направленную к центру звезды-донора. Следовательно, материя – горячий газ-водород – будет перетекать со звезды-донора на нейтронную звезду. Поскольку эти звезды вращаются вокруг общего центра масс, материя не может упасть прямо на нейтронную звезду. Прежде чем достичь ее поверхности, она падает на орбиту вокруг нейтронной звезды, создавая вращающийся диск горячего газа, или аккреционный диск. Часть этого газа на внутреннем кольце диска в конечном счете находит свой путь далее вниз, к поверхности нейтронной звезды.

Тут в дело вступает интересная часть физики, с которой вы знакомы в несколько ином контексте. Поскольку газ очень горячий, он ионизирован и состоит из положительно заряженных протонов и отрицательно заряженных электронов. Но из-за того что у нейтронных звезд очень сильные магнитные поля, эти заряженные частицы вынуждены держаться линии магнитного поля звезды, в результате чего большая часть этой плазмы попадает на магнитные полюса нейтронной звезды (как в полярном сиянии на Земле). Эти магнитные полюса (где материя буквально обрушивается на нейтронную звезду) становятся горячими точками с температурой в миллионы градусов Кельвина, излучающими рентгеновские лучи. А учитывая, что магнитные полюса, как правило, не совпадают с полюсами оси вращения (см. главу 12), мы на Земле получим высокоэнергетический поток рентгеновского излучения, только когда это горячее пятно повернуто в нашу сторону. И так как нейтронная звезда вращается, нам она кажется пульсирующей.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*