KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Леонард Сасскинд - Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной

Леонард Сасскинд - Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Леонард Сасскинд, "Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной" бесплатно, без регистрации.
Перейти на страницу:

Как выяснилось, симметрия зарядового сопряжения также является слегка нарушенной. Но, как и в случае с зеркальной симметрией, эффект от этого нарушения оказывается совершенно незначительным, если не принимать в расчёт частицы очень высоких энергий. Теперь вернёмся к фермионам и бозонам. Исходная, самая первая теория струн, которую разработали мы с Намбу, называется теорией бозонных струн, потому что все описываемые ею частицы являются бозонами. Она не вполне подходит для описания адронов, ведь, в конце концов, протон – это фермион. Точно так же она не годится и на роль теории всего. Электроны, нейтрино, кварки – все являются фермионами. Но прошло совсем не много времени, и появилась новая версия теории струн, которая уже содержала не только бозоны, но и фермионы. И одним из замечательных математических свойств этой так называемой теории суперструн была суперсимметрия – симметрия между бозонами и фермионами, требующая, чтобы у каждого фермиона существовал близнец-бозон, обладающий точно такими же свойствами, и наоборот.

Суперсимметрия оказалась незаменимым и чрезвычайно мощным математическим инструментом для струнных теоретиков. Без него математика оказывается настолько сложной, что установить факт согласованности теории очень трудно. Почти все заслуживающие доверия теории, претендующие на описание реального мира, являются суперсимметричными. Но, как я уже подчеркнул, суперсимметрия в природе не является точной симметрией. В лучшем случае это довольно сильно нарушенная симметрия, напоминающая отражение мира в чрезвычайно кривом зеркале. До сих пор ни для одной из известных элементарных частиц не обнаружено суперпартнёра. Если бы в природе существовал бозон с такими же массой и зарядом, как у электрона, он бы уже давно был открыт. Тем не менее если вы откроете веб-браузер и поищете в интернете статьи по физике элементарных частиц, вы обнаружите, что начиная с середины 1970-х годов в подавляющем числе работ так или иначе используется суперсимметрия. Почему? Почему теоретики до сих пор не выбросили суперсимметрию в мусорную корзину вместе с теорией суперструн? Тому есть несколько причин.

Предмет, который когда-то назывался высокоэнергетической теоретической физикой элементарных частиц, давно уже разделился на две дисциплины: теоретическую и феноменологическую. Если вы введёте в адресной строке своего браузера URL http://arXiv.org, то попадёте на сайт, где физики публикуют препринты своих статей. Различные дисциплины подразделяются там на ядерную физику, физику конденсированных сред и т. д. Если вы перейдёте в раздел высокоэнергетической физики (hep), то найдёте там два отдельных архива: один (hep-ph) содержит феноменологические, а второй (hep-th) – теоретические и математические статьи. Заглянув в эти архивы, вы увидите, что раздел hep-ph содержит статьи по вопросам традиционной физики элементарных частиц, содержащие либо результаты проведённых, либо описание планируемых экспериментов. Обычно в этих статьях присутствует большое количество таблиц и графиков. В противоположность этому, в разделе hep-th присутствуют по большей части статьи по теории струн и гравитации. Они полны математических выкладок и имеют очень слабое отношение к экспериментам. Однако в последние годы границы между этими двумя дисциплинами всё сильнее размываются, что, на мой взгляд, является хорошим знаком.

Но в обоих разделах большинство статей так или иначе имеют отношение к суперсимметрии. У представителей каждого имеются на то собственные резоны. Для чистых теоретиков таким резоном является математика – использование суперсимметрии приводит к потрясающему упрощению математических выкладок и позволяет получать решение задач, разобраться с которыми другими методами было бы невероятно трудно. Помните, в главе 2 я говорил о том, что космологическая постоянная будет в точности равна нулю, если у всех частиц будут суперсимметричные партнёры? Это одно из математических чудес, появляющихся в суперсимметричных теориях. Мне не хотелось бы тут их описывать, но главное то, что суперсимметрия настолько упрощает расчёты в квантовой теории поля и теории струн, что теоретикам становятся доступны такие вещи, которые в противном случае они вряд ли смогли бы вывести. И пусть реальный мир не суперсимметричен, но суперсимметрия позволяет понять некоторые из существующих явлений, например чёрные дыры. Любая теория, включающая гравитацию, описывает и чёрные дыры. Они обладают парадоксальными и таинственными свойствами, о которых мы поговорим позже. Возможные варианты разрешения этих парадоксов слишком сложны для проверки в обычных теориях. И тут, словно по волшебству, существование суперпартнёров делает изучение чёрных дыр необычайно простым. Особенно ценно это упрощение для струнных теоретиков. Математика теории струн, как это сейчас принято, почти полностью полагается на суперсимметрию. Даже многие старые квантово-механические расчёты поведения кварков и глюонов существенно упрощаются при добавлении суперпартнёров. Суперсимметричный мир – это не реальный мир (по крайней мере, в нашей карманной Вселенной), но этот мир достаточно близок к нашему, чтобы извлечь из его изучения множество уроков относительно гравитации и физики элементарных частиц.

Хотя конечные цели «хепферов» и «хептеров»[79] совпадают, текущие задачи феноменологов и струнных теоретиков различаются. Феноменологи используют старые методы теоретической физики и иногда новые идеи теории струн для описания Законов Физики в том плане, как они понимались на протяжении большей части XX века. Как правило, они не пытаются построить теорию, единственным подтверждением правильности которой была бы её математическая полнота. Не пытаются они и построить единую теорию. Суперсимметрия интересует их лишь как приближение к нарушенной симметрии природы для поиска чего-то, что может затем быть обнаружено в лабораторных экспериментах. Наиболее важным открытием для них было бы обнаружение отсутствующих суперпартнёров.

Как вы помните, нарушенная симметрия не является совершенной. В идеальном зеркале объект и его отражение полностью идентичны с точностью до замены правого на левое, но в кривом зеркале из комнаты смеха симметрия несовершенна. Такое отражение, возможно, годится лишь для того, чтобы опознать объект, но при этом оно является сильно искажённой копией. Изображение худого человека в таком зеркале может выглядеть как изображение толстяка, весящего в несколько раз больше, чем его худой двойник.

В аттракционе кривых зеркал, называемом нашей Вселенной, зеркало суперсимметрии вносит в отражение частиц огромные искажения, настолько огромные, что суперпартнёры обычных частиц выглядят в нём невероятными толстяками. Если они существуют, то должны быть во много раз тяжелее обычных частиц. До сих пор не обнаружено ни одного суперпартнёра: ни суперпартнёра электрона, ни суперпартнёра фотона, ни суперпартнёра кварка. Означает ли это, что их совсем не существует и что суперсимметрия – всего лишь бесполезная математическая игра? Возможно, что и так, но это также может означать, что искажение настолько велико, что суперпартнёры слишком тяжелы и энергии современных ускорителей частиц недостаточно для их обнаружения. Если по каким-то причинам массы суперпартнёров превышают несколько сотен масс протона, их действительно не удастся обнаружить, пока не будет построено следующее поколение ускорителей.

Все суперпартнёры имеют названия, похожие на названия их обычных близнецов. Эти названия нетрудно запомнить, если знать правило. Если обычная частица является бозоном, например фотоном или бозоном Хиггса, то название её суперпартнёра образуется добавлением суффикса «ино». Например, фотино, хигсино или глюино. Если же исходная частица является фермионом, то название суперпартнёра образуется добавлением приставки «с», например, сэлектрон, смюон, снейтрино, скварк и т. п. Это последнее правило породило самые уродливые названия, которые только можно встретить в физике.

В науке существует устоявшееся мнение, что новые открытия поджидают нас буквально «за углом». Если попытки обнаружить суперпартнёров в области нескольких сотен масс протона потерпят неудачу, оценки, скорее всего, будут пересмотрены и обнаружение суперчастиц будет отложено до постройки ускорителей, позволяющих генерировать частицы с массами в тысячу масс протона… или в десять тысяч масс протона. Не напоминает ли это попытки выдать желаемое за действительное? Я так не думаю. Суперсимметрия может оказаться ключом к загадке частиц Хиггса, и сама проблема, возможно, связана с Матерью всех физических проблем и с загадкой необъяснимой слабости гравитационного взаимодействия.

Та же самая квантовая дрожь, которая приводит к необъяснимо высокой энергии вакуума, может оказаться ответственной и за массы элементарных частиц. Предположим, что мы поместили частицу в дрожащий вакуум. Взаимодействуя с квантовыми флуктуациями, частица будет вносить возмущения в них в непосредственной близости от своего местоположения. Одни частицы будут гасить квантовые флуктуации, другие – усиливать их. Суммарным эффектом может стать изменение энергии этих флуктуаций. Эту дополнительную энергию, возникающую из-за присутствия частицы, можно интерпретировать как некую дополнительную массу (вспомните о E = mc2). Наиболее характерным примером является попытка рассчитать таким образом массу бозона Хиггса. При этом получается совершенно абсурдный результат, похожий на результат попытки оценить энергию вакуума. Вакуумная дрожь в окрестности бозона Хиггса приводит к добавке, имеющей порядок планковской массы!

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*