KnigaRead.com/

Стивен Маран - Астрономия для "чайников"

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Стивен Маран, "Астрономия для "чайников"" бесплатно, без регистрации.
Перейти на страницу:

Все, что попадает внутрь горизонта событий, движется вниз по направлению к сингулярности. Здесь оно вливается в сингулярность, которая, по мнению ученых, имеет бесконечную плотность. Мы не знаем, какие законы физики действуют в местах такой колоссальной плотности, какая достигается в точке сингулярности или рядом с ней, поэтому не можем описать характеристики данного места. Это буквально "черная дыра" (или белое пятно?) в наших знаниях.

Некоторые математики считают, что в сингулярности находится так называемая червоточина (wormhole), или пространственно-временной туннель, т. е. переход из черной дыры в другую вселенную. Концепция туннеля вдохновила многих писателей и кинорежиссеров на создание множества фантастических произведений на данную тему. Но цель у них одна — заработать деньги, и больше ничего. Большинство специалистов считают, что никаких туннелей-червоточин не существует. Но даже если бы они существовали, мы не знаем способа ни увидеть их внутри черных дыр, ни проникнуть к ним другим путем. Но есть и другая теория, которая заключается в следующем: там, где гипотетическая червоточина соединяется с другой вселенной, существует белая дыра (white hole), т. е. место, где колоссальная энергия выливается из нашей вселенной в другую. Скорее всего, эта теория тоже неверна, но даже если она верна, то мы должны совершить путешествие в другую вселенную, чтобы увидеть эту белую дыру.

О путешествиях в другие вселенные не может быть и речи (по крайней мере, пока). Но, конечно, у нас есть другая возможность: поискать белые дыры в нашей вселенной, где могут возникнуть туннели из других вселенных. Однако ученые пока ничего подобного не обнаружили. Кто-то когда-то предположил, что квазары — это, возможно, червоточины. Но в настоящее время у ученых есть достаточно хорошая теория квазаров (о ней я расскажу в этой главе), никак не связанная с червоточинами.

Что находится снаружи черной дыры

В реальных небесных объектах, которых, по мнению ученых, можно считать "кандидатами в черные дыры", обычно происходит следующее.

1. Газообразное вещество, движущееся по направлению к черной дыре, кружится вокруг нее в плоском облаке, называемом аккреционным диском (accretion disk).

2. Чем ближе газ в аккреционном диске подходит к черной дыре, тем плотнее и горячее он становится.

Газ нагревается, поскольку его сжимает гравитация черной дыры; причина в том, что по мере увеличения плотности газа трение возрастает. (Это похоже на принцип работы кондиционеров воздуха и холодильников: когда газ расширяется, он становится холоднее, а когда сжимается, — горячее.)

3. Когда газ приближается к черной дыре и нагревается, он ярко светится. Излучение от аккреционного диска может быть разным, но чаще всего — это рентгеновское излучение. Рентгеновские телескопы, такие как новейшая обсерватория на орбите, CHANDRA, регистрируют эти рентгеновские лучи, что позволяет ученым определить черную дыру.

Так что, хотя мы не видим черную дыру в телескоп непосредственно, мы можем зарегистрировать излучение от аккреционного диска, который вращается вокруг нее, с помощью рентгеновского телескопа, летающего в космосе. Дело в том, что рентгеновские лучи не проходят, слава Богу, через атмосферу Земли, поэтому для их обнаружения астрономы используют телескопы, находящиеся в космосе.

Могут существовать также голые черные дыры, в которые не попадает вращающийся газ. В этом случае астрономы не смогут обнаружить такую дыру, если только она не пройдет прямо перед звездой или галактикой, которую в данный момент наблюдают. Тогда можно предположить, что черная дыра существует, поскольку мы увидим влияние ее гравитации на внешний вид объекта на заднем плане. Но это очень редкое совпадение. Поэтому не очень-то на него рассчитывайте.

Искривления пространства и времени

Черную дыру определяют также как место, где структура пространства и времени сильно искривлена. Прямая линия — ее в физике определяют как путь, по которому свет движется в вакууме, — вблизи черной дыры становится кривой. И по мере приближения объекта к черной дыре с самим временем тоже происходят странные вещи, по крайней мере с точки зрения наблюдателя, находящегося на безопасном расстоянии.

Предположим, что, находясь на безопасном расстоянии, вы запустили автоматический космический зонд в черную дыру. На большой электронной панели сбоку от зонда высвечивается время, которое показывают его бортовые часы.

По мере того как зонд движется к черной дыре, вы наблюдаете за этими часами в телескоп. И вот вы видите, что чем ближе зонд подходит к черной дыре, тем все больше и больше отстают часы, замедляется время. На самом деле вы никогда не увидите момент, когда зонд попадет в черную дыру. Вы увидите, что он становится все краснее и краснее, поскольку мощная гравитация черной дыры смещает свет в красную область спектра. Через некоторое время свет от электронной панели будет смещен в инфракрасный диапазон, который ваши глаза уже не воспримут. (Об эффекте Допплера и красном смещении читайте в главе 11.)

А теперь давайте представим, что вы увидели бы, находясь в самом зонде, направляющемся к черной дыре. (Только не пытайтесь это осуществить на самом деле.) Предположим, вы можете наблюдать за часами внутри зонда. И вот вы, несчастный астронавт, видите, что часы идут вполне нормально. И вам вовсе не кажется, что они хоть немного отстают. Когда вы выглядываете в иллюминатор, чтобы посмотреть на космический корабль-носитель и на звезды, то вам кажется, что на все вокруг действует фиолетовое смещение. И вам самому грустно от мысли о том, что вы никогда не вернетесь домой. Вы очень быстро, почти незаметно для себя, пересекаете невидимую границу вокруг черной дыры. Эта граница — горизонт событий; попав внутрь него, вы уже никогда не увидите ничего, что находится снаружи, как и никто снаружи никогда не увидит вас.

Наблюдателям на корабле-носителе будет казаться, что вы никогда не войдете в черную дыру; им кажется, что вы просто подлетаете все ближе и ближе. Но вы, находясь на космическом зонде, можете сказать, что попали прямо в черную дыру. Конечно, если к этому моменту вы еще сможете что-то сказать (т. е. останетесь в живых). В конце концов, все, что попадает в черную дыру, разрывается на части приливными силами, результатом действия мощнейшей гравитации черной дыры. Вы будете разорваны на части, по меньшей мере, в одном измерении. И, что еще хуже, в двух других пространственных измерениях приливные силы безжалостно вас сожмут.

Если вы войдете в черную дыру "вперед ногами", то вас растянет (если еще не разорвало на части), пока вы не станете достаточно высоким, чтобы стать центральным нападающим баскетбольной сборной (шутка). Но от живота до спины и от одного бока до другого вас сожмет так же, как невероятное давление в глубинах Земли сжимает уголь, превращая его в алмаз. И даже сильнее.

Черные дыры малой или звездной массы — самые смертоносные, так же как некоторые маленькие паучки ядовитее больших тарантулов. Если вы движетесь в черную дыру звездной массы, то вас разорвет на части и сожмет еще до того, как вы упадете внутрь, и вам не удастся увидеть исчезающую Вселенную перед тем, как все будет кончено. Попасть в сверхмассивную черную дыру совсем не так страшно. Начав падать внутрь горизонта событий, вы увидите меркнущий свет Вселенной, прежде чем вас накроют приливные силы.

Учитывая, что черные дыры окружают нас во Вселенной со всех сторон, становится понятно, почему ученые стараются обнаружить и изучить их, оставаясь при этом на безопасном расстоянии.

Определения квазаров

 Существует по меньшей мере два определения квазаров — первоначальное и современное.

 Первоначальное определение. Квазар (quasar) — это сложносокращенное слово от выражения "квазизвездный источник радиоизлучения". Под этим термином имеется в виду небесный объект, который излучает сильные радиоволны, но в обычный телескоп (работающий в видимом диапазоне) выглядит как звезда (рис. 13.2).

Рис. 13.2. Квазар (ниже и левее центра)


В этом первоначальном определении квазара нет ничего неправильного, за исключением следующего факта. Как оказалось, изо всех объектов, которые мы сегодня называем квазарами, этому определению соответствуют максимум 10 %. А остальные 90 % не излучают сильных радиоволн. Такие объекты астрономы называют радиоспокойными квазарами.

 Современное определение. Квазар — это яркий объект в центре галактики, который производит примерно в 10 триллионов раз больше энергии в секунду, чем наше Солнце, и чье излучение очень изменчиво во всем диапазоне длин волн.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*