KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Олег Фейгин - Феномен Мессинга. Как получать информацию из будущего?

Олег Фейгин - Феномен Мессинга. Как получать информацию из будущего?

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Олег Фейгин, "Феномен Мессинга. Как получать информацию из будущего?" бесплатно, без регистрации.
Перейти на страницу:

Как уже говорилось, не исключено, что подобные коллизии происходят циклически. Две мембраны могут сталкиваться, отскакивать друг от друга, расходиться, притягиваться одна к другой, снова соударяться и так далее. Расходясь после удара, они немного растягиваются, а при очередном сближении снова сжимаются. Когда направление движения мембраны сменяется на противоположное, она расширяется с ускорением, поэтому наблюдаемое ускоряющееся расширение Вселенной может указывать на предстоящее столкновение.

Разработчики подобных космологических сценариев вначале надеялись, что слабость сил облегчит процедуру анализа столкновения, однако им приходится иметь дело с высокой кривизной пространства-времени, поэтому пока нельзя однозначно решить, удастся ли избежать сингулярности. Кроме того, этот сценарий должен протекать при весьма специфичных обстоятельствах. Например, перед самым столкновением мембраны должны быть почти идеально параллельны друг другу, иначе вызванный им Большой взрыв будет недостаточно однородным. В циклической версии эта проблема стоит не так остро: последовательные соударения позволили бы мембранам выровняться.

Оставив пока в стороне трудности полного математического обоснования обеих моделей, ученые должны разобраться, удастся ли когда-нибудь проверить их экспериментально. На первый взгляд, описанные сценарии очень похожи на упражнения не в физике, а в метафизике: масса интересных идей, которые никогда не удастся подтвердить или опровергнуть результатами наблюдений. Такой взгляд слишком пессимистичен. Как стадия инфляции, так и довзрывная эпоха должны были оставить после себя артефакты, которые можно заметить и сегодня, например в небольших вариациях температуры реликтового излучения.

Во-первых, наблюдения показывают, что температурные отклонения были сформированы акустическими волнами за несколько сотен тысяч лет. Регулярность флуктуаций свидетельствует о когерентности звуковых волн. Космологи уже отвергли целый ряд космологических моделей, не способных объяснить волновой синхронизм. Сценарии с инфляцией, эпохой до Большого взрыва и столкновением мембран успешно проходят это первое испытание. В них синфазные волны создаются квантовыми процессами, усилившимися в ходе ускоряющегося космического расширения.

Во-вторых, каждая модель предсказывает разное распределение температурных флуктуаций в зависимости от их углового размера. Оказалось, что большие и малые флуктуации имеют одинаковую амплитуду. (Отступления от этого правила наблюдаются только при очень малых масштабах, в которых изначальные отклонения изменились под действием более поздних процессов.) В инфляционных моделях это распределение воспроизводится с высокой точностью. Во время инфляции кривизна пространства изменялась относительно медленно, так что флуктуации различных размеров возникали в почти одинаковых условиях. Согласно обеим струнным моделям, кривизна менялась быстро.

В-третьих, в ранней Вселенной температурные вариации могли возникать из-за флуктуаций плотности вещества и из-за слабых колебаний, вызванных гравитационными волнами. При инфляции обе причины имеют одинаковое значение, а в сценариях со струнами основную роль играют вариации плотности. Гравитационные волны должны были оставить свой отпечаток в поляризации реликтового излучения. Разумеется, анализ реликтового «дыхания Большого взрыва» – не единственный способ проверить рассмотренные теории. Сценарий с эпохой до Большого взрыва подразумевает возникновение случайного фона гравитационных волн в некотором диапазоне частот, который в будущем можно будет обнаружить с помощью гравитационных обсерваторий.

С появлением квантовой механики мы пришли к осознанию того, что события не могут быть предсказаны с абсолютной точностью – всегда остается элемент неопределенности. Если хочется, можно приписать случайность вмешательству Бога. Но это было бы очень странное вмешательство: нет никаких признаков того, что оно преследует какую-либо цель. В противном случае это по определению не было бы случайностью. Сегодня мы всеми силами стремимся к тому, чтобы сформулировать набор законов, который позволит предсказывать события в пределах, установленных квантовым принципом неопределенности[21].

Изучая элементарные частицы, взаимодействующие со все более и более высокими энергиями, мы можем ожидать открытия новых уровней строения материи, более фундаментальных, чем кварки и электроны, которые ныне считаются «элементарными» частицами. Похоже, что этой череде вложенных друг в друга частиц может положить предел только квантовая гравитация. Ведь если бы существовала сверхфундаментальная «частица частиц» с энергией, превышающей так называемую энергию Планка, концентрация ее массы была бы столь высока, что она отсекла бы себя от остальной Вселенной и превратилась бы в небольшую черную дыру. Таким образом, последовательность все более совершенных теорий, похоже, должна иметь некий предел при переходе ко все более высоким энергиям, а значит, должна быть достижима некая окончательная теория Вселенной. Но все же планковская энергия очень далека от энергий, которые мы способны получить на современных лабораторных установках. И мы не сможем преодолеть этот разрыв с помощью ускорителей элементарных частиц, которые появятся в обозримом будущем, не говоря уже о БАКе. А ведь именно такие энергии должны были иметь место на самых ранних стадиях эволюции Вселенной.

Какое значение имело бы открытие окончательной теории Вселенной? Прежде всего это поставило бы точку в грандиозной эпохальной битве человеческого разума за познание истинного лика Мироздания. И это также революционным образом перевернуло бы понимание обычным человеком законов, которые управляют Вселенной.

Во времена Ньютона образованный человек мог овладеть всем знанием, накопленным цивилизацией, по крайней мере в общих чертах. Но с тех пор темпы развития науки сделали это невозможным. Поскольку теории постоянно пересматриваются с учетом новых наблюдений, они никогда не излагаются достаточно сжато и просто, чтобы их могли постичь обычные люди. Для этого нужно быть специалистом, но даже тогда вы вправе надеяться на полное понимание лишь малой доли научных теорий.

Кроме того, прогресс науки настолько стремителен, что в школе или университете всегда преподаются довольно устаревшие знания. Лишь немногим людям удается следить за быстро раздвигающимися границами знания, если они посвящают этому все свое время и сосредоточиваются на маленькой области. Остальная часть населения имеет слабое представление о совершаемых прорывах и о том волнении, которое они производят в умах ученых. Если бы удалось создать полную объединенную теорию, то появление сжатого и простого ее изложения оказалось бы лишь вопросом времени, и, подобно теории относительности, ее стали бы преподавать в школах, по крайней мере в общих чертах. Мы все смогли бы тогда получить вполне определенное представление о законах, которые управляют Вселенной и ответственны за наше существование.

Вполне возможно, что многие передовые теоретические идеи будут проверены уже в течение нескольких следующих десятилетий. Физики (и не только) полны надежд, что планируемые или уже идущие полным ходом эксперименты наконец-то прояснят вопросы о существовании дополнительных измерений, составе темной материи и энергии, происхождении массы, космологии ранней Вселенной, существенности суперсимметрии и, возможно, достоверности самой теории струн. Разумеется, практическое исследование «совершенно безумных» идей, сформулированных в работах выдающихся физиков прошлого и настоящего столетий, наталкивается на множество затруднений. Ведь непросто придумать экспериментальную проверку для мысли о том, что наша Вселенная – это гигантская флуктуация топологии более общего суперпространства, связанного с вакуумным состоянием физических полей.

Свойства этого состояния должны радикально отличаться от свойств обычного пространства-времени. Во-первых, его размерность не обязательно должна равняться четырем (три пространственные и одна временная координаты). Более того, вакуум как основное состояние материи характеризуется нулевыми физическими зарядами – следовательно, не существует и классического прибора, способного зафиксировать какую-то упорядоченность событий, а значит, не существует и самих понятий пространства и времени, как, впрочем, и причинности. И наконец, будучи сугубо квантовым объектом, вакуум физических полей флуктуирует, порождая топологические аномалии – «пузырьки», которые рождаются и гибнут. Внутри каждого такого пузырька можно ввести понятие собственного времени, направление которого фиксирует эволюцию материи внутри от момента рождения и до момента «схлопывания». Подавляющая доля таких пузырьков имеет время жизни, сравнимое с планковским временем, и внешне проявляют себя как замкнутые мини-Вселенные. Такое своего рода кипение вакуума – рождение и гибель виртуальных Вселенных – является обобщением на гравитацию хорошо известного в квантовой физике эффекта поляризации вакуума – рождения и гибели виртуальных пар частиц – античастиц.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*