Леонард Сасскинд - Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной
Теперь представим себе, как могла бы выглядеть история струны в пространстве-времени. Возьмём замкнутую струну, не имеющую концов. В каждый конкретный момент времени такая струна будет представляться в пространстве замкнутой кривой. Представьте себе, что эту струну освещает стробоскоп. Во время первой вспышки мы увидим кольцо. При следующей вспышке мы увидим то же самое кольцо, только в другом месте. В конечном итоге мы увидим набор колец, отображающий последовательные положения струны.
Но в действительности время течёт непрерывно, и чтобы составить полную историю движения струны, нужно заполнить промежутки между её последовательными изображениями. В результате получится трубка, проходящая через пространство-время: двумерная цилиндрическая поверхность.
Размер кольца струны может изменяться со временем, ведь струна способна сжиматься, растягиваться и колебаться. Временами она может даже самопересекаться, образуя подобие восьмёрки или принимая более сложные формы. В этом случае цилиндр окажется деформированным, но в нём всё ещё можно будет узнать цилиндр.
Поверхность, заметаемую кольцом, можно было бы очень удачно назвать трубкой мира по аналогии с мировой линией. Но так случилось, что в физике прижился другой термин: мировой лист, или мировая поверхность. Но как бы мы его ни называли, этот цилиндр представляет собой пропагатор струны, который приходит на замену пропагатору точечной частицы.
Мезон, оканчивающийся двумя кварками, тоже может быть представлен в виде мирового листа, только это будет не цилиндр, а лента, имеющая два края. Вернёмся к аналогии со стробоскопом. Теперь мы будем видеть последовательность открытых струн с кварками на концах. Заполнив пространство между последовательными изображениями мезона, мы получим мировой лист в виде ленты.
Но для интересной теории, которая способна была бы описывать сложные взаимодействия сталкивающихся частиц, недостаточно одних только пропагаторов. Нужны ещё вершины, развилки дорог, в которых частицы могли бы излучать и поглощать другие частицы. И теория струн не исключение.
Вершина для открытой струны должна выглядеть как обычная дорожная развилка: в какой-то момент времени струна разрывается посередине, на образовавшихся свободных концах образуются кварк и антикварк, и вот уже две струны продолжают своё путешествие. Закрытые струны тоже могут разделяться на две. Соответствующая этому процессу диаграмма выглядит как Y-образная развилка водопроводной трубы.
Если вы будете следовать по этой диаграмме снизу вверх (от прошлого к будущему), вы увидите, как одна струна расщепляется на две, каждая из которых удаляется в своём направлении. Перевернув диаграмму, вы получите процесс слияния двух струн в одну.
Идея заключается в том, чтобы заменить обычные фейнмановские диаграммы сетью водопроводных труб, представляющих собой пропагаторы струн, и Y-образных развилок, заменяющих прежние вершины. Очень быстро теоретики поняли, что деление диаграммы на цилиндрические пропагаторы и Y-сочленения носит искусственный характер и что в действительности теория содержит мировые листы любой формы и топологии. Диаграммы могут содержать отверстия, представляющие входящие и выходящие струнноподобные глюболы, но в общем случае они могут быть любой сложности.
Этот способ представления адронов трудно связать со Стандартной моделью, теорией, основанной на обычных фейнмановских диаграммах, (то есть на точечных частицах). Современная Стандартная модель включает то, что на первый взгляд выглядит как совершенно отличная от всего предыдущего теория адронов – теория, известная под названием квантовая хромодинамика, или КХД.
Согласно КХД, адроны состоят из кварков и антикварков. В этом КХД имеет много общего с теорией струн, которую разрабатывали мы с Намбу. Но удерживающая кварки вместе сила – клей, скрепляющий адроны, – совершенно не похожа на струны. Кварки испускают и поглощают глюоны[72] точно так же, как электроны испускают и поглощают фотоны. Силы, удерживающие кварки в адронах, обязаны своим происхождением обмену глюонами между кварками.
У глюонов есть одна особенность, которая делает их более сложными, чем фотоны. Заряженные частицы могут излучать и поглощать фотоны, но сами фотоны не обладают такой способностью. Другой способ сказать то же самое: не существует вершин, в которых один фотон распадается на два. Глюоны же способны испускать и поглощать другие глюоны.
Существует вершинная диаграмма, на которой три глюона соединяются в одной вершине. В конечном итоге это делает глюоны и кварки гораздо более «липкими», чем электроны и позитроны.
Всё это выглядит так, будто существуют две различные теории адронов: КХД и теория струн. Но, разумеется, почти с самого момента появления теории струн было очевидно, что эти два описания в действительности – лишь два лица одной и той же теории. Просто ключевое Озарение опередило на пару лет открытие КХД.
Мост между обычными фейнмановскими диаграммами и теорией струн показался из тумана, когда в 1970 году я получил письмо от блестящего молодого датского физика Хольгера Бех Нильсена. Он был в восторге от моей статьи, где я излагал теорию с резинкой, и хотел поделиться некоторыми из своих идей. В письме он сообщал, что тоже думал о чём-то, очень похожем на упругую струну, и излагал свои соображения под несколько другим углом.
Идея соединить теорию струн с фейнмановскими партонами[73] была созвучна тому, о чём я сам размышлял в течение продолжительного времени. Нильсен глубоко изучил вопрос и имел собственное, весьма интересное видение проблемы. Он предложил считать, что гладкий непрерывный мировой лист на самом деле представляет собой мелкую сеть из линий и узлов. Другими словами, мировой лист в его представлении был обыкновенной, но чрезвычайно сложной фейнмановской диаграммой, состоящей из огромного числа пропагаторов и вершин. Эта сеть становилась всё более и более гладкой по мере добавления в неё новых вершин и пропагаторов и всё лучше и лучше аппроксимировала гладкий мировой лист. Теория адронных струн тоже может быть сформулирована подобным способом.
Мировые листы, трубки и Y-образные сочленения можно представить как очень сложные фейнмановские диаграммы с участием кварков и огромного количества глюонов. Когда вы смотрите на мировой лист «с большого расстояния», он кажется гладким. Но «под микроскопом» мировой лист выглядит как рыболовная сеть[74] или как баскетбольная корзина, сплетённая из фейнмановских диаграмм. Нити рыболовной сети представляли пропагаторы точечных частиц, узлы – партоны Фейнмана или кварки и глюоны Гелл-Мана, а «ткань», сотканная из этих микроскопических мировых линий, – непрерывный мировой лист.
Вы можете представить струну как набор партонов, нанизанных один за другим подобно нитке жемчуга. Фейнмановская партонная теория, Гелл-Мановская кварковая теория и моя «резиновая» теория – всё это различные способы представления квантовой хромодинамики.
Струнной, или «резиновой» модели адронов не сопутствовал немедленный успех. Многие теоретики, занимавшиеся адронной физикой в 1960-х годах, выражали весьма негативное отношение к любой теории, которая пыталась визуализировать явления. Рьяные сторонники теории S-матрицы утверждали, что столкновение – это непознаваемый «чёрный ящик», и отстаивали своё неприятие новой теории с почти миссионерским рвением. Они признавали только одну заповедь – «не срывай покрова», то есть «не заглядывай “внутрь” процесса столкновения, пытаясь обнаружить механизмы происходящих процессов, не пытайся понять строение такой частицы, как протон». Враждебное восприятие идеи о том, что уравнение Венециано описывает столкновение двух резинок, сохранялась до тех пор, пока однажды Мюррей Гелл-Ман не поставил на ней свою печать одобрения.
Мюррей был королём физики, когда я впервые встретился с ним в Корал Гейблс, штат Флорида, в 1970 году. В то время кульминацией сезона теоретической физики была конференция в Корал Гейблс. А кульминацией конференции была лекция Мюррея. Для меня Корал Гейблс оказался первой большой конференцией, на которую я был приглашен не в качестве лектора, а в качестве слушателя. Мюррей начал свою лекцию с темы спонтанного нарушения дилатационной симметрии – одной из проблем, с которой у него были проблемы. Едва ли я смогу вспомнить саму лекцию, но очень хорошо помню, что произошло потом: мы с Мюрреем застряли в лифте.
Я был тогда совершенно неизвестен, в то время как всё физическое сообщество боготворило Мюррея. Разумеется, застряв с ним в лифте, я потерял дар речи.