KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Уолтер Гратцер - Эврики и эйфории. Об ученых и их открытиях

Уолтер Гратцер - Эврики и эйфории. Об ученых и их открытиях

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Уолтер Гратцер, "Эврики и эйфории. Об ученых и их открытиях" бесплатно, без регистрации.
Перейти на страницу:

27 и 28 февраля 1942 года во множестве отчетов из самых разных областей страны одновременно сообщалось, что противовоздушные радары с рабочей длиной волны 4 и 8 метров днем испытали серьезные помехи и что невероятная интенсивность помех сделала дальнейшую работу радаров невозможной. К счастью, в тот момент не происходило никаких авианалетов, но тревогу все равно объявили всюду, где был замечен новый вид помех. Осознав, что направления максимальной интерференции, зафиксированные операторами, повторяли маршрут Солнца на небе, я немедленно позвонил в Королевскую обсерваторию в Гринвиче, чтобы узнать, не стряслось ли чего-нибудь экстраординарного с солнечной активностью. Мне сообщили, что хотя и шел всего второй год (если отсчитывать от минимума) одиннадцатилетнего солнечного цикла, но, однако, на Солнце появилось невероятно активное пятно, которое медленно пересекало солнечный диск, а 28 января оказалось на центральном меридиане. (Солнечные пятна путешествуют за счет вращения Солнца вокруг своей оси, они — сильные магниты, хотя Солнце в целом — слабый магнит.) Мне стало ясно, что Солнце должно излучать электромагнитные волны — ничем иным объяснить совпадение направлений нельзя — и что источник этих волн лежит в зоне активного пятна. Я знал, что магнетронные установки генерируют сантиметровые радиоволны (то излучение, которое, отражаясь от самолета, позволяет радару его заметить) за счет электронов, движущихся в килогауссовых магнитных полях. Тогда, размышлял я, почему бы зоне активного пятна — с ее огромными запасами энергии и умением испускать потоки частиц, таких как ионы и электроны, — в магнитном поле порядка ста гауссов не порождать метровое излучение?

Когда я написал статью с изложением деталей происшествия, мой начальник Б. Ф. Дж. Шёнланд вспомнил про открытие Янским галактического радиошума, но с этим открытием я прежде не был знаком. Поразительно, но некоторые радиофизики, занятые изучением ионосферы и проблем связи, отнеслись к моим выводам с недоверием. Им было трудно допустить, что такие мощные всплески активности остались незамеченными в прежние десятилетия, когда радиофизика уже вовсю развивалась.

Для относительного новичка в этой области было едва ли не наглостью представлять статью про явление большой мощности, связанное с радио, на Солнце.

У открытия мощного радиоизлучения со стороны Солнца было много общего с открытием Янского, который обнаружил радиошум в космосе. Оба были примерами наблюдений, сделанных с определенной целью, но указывающих на прежде неизвестное явление. В обоих случаях целью было изучить разновидности интерференции, ограничивавшие эффективность какой-нибудь системы.

Работам Хея и похожим результатам, полученным в лабораториях Bell независимо от него, но чуть позже, пришлось ждать публикации до конца войны. Хей предполагает, что в ошибке прежних исследователей, которым не удалось зафиксировать столь явное и заметное излучение Солнца в период появления активных пятен, которое, говорит он, “буквально кричало, чтобы его заметили”, виновата распространенная тогда догма: никто не слеп настолько, чтобы не увидеть очевидного. Один только астроном-любитель подобрался к этой теме вплотную в 1938 году.

HeyJ.S., The Evolution of Radio Astronomy (Elek Science, London, 1973^.

Шахматная доска императора

Легенды рассказывают, что некий китайский император спросил у одного мудреца, как вознаградить его за важную услугу. Мудрец назвал свою цену: дай мне обычного риса, а вот сколько? Положи два зерна на первую клетку шахматной доски, четыре на вторую, восемь на третью и так далее. Скромная просьба, подумал император, и с облегчением согласился. Однако он не знал, что такое геометрическая прогрессия — выполняя указания мудреца, весь урожай риса страны следовало уложить на одну-единственную клетку, причем задолго до последней, 64-й.

Тот же простой расчет (очевидный для каждого, кто хорошо знаком с числами), привел, вероятно, к одному из главных технологических достижений XX века и обеспечил Кэри Мюллису, блестящему американскому биологу, Нобелевскую премию (в 1993 г.). Вот как сам ученый вспоминает ослепительный момент, когда ему вдруг все стало ясно, — минуты, которые удается пережить очень немногим.

Пятничным вечером в конце весны 1983 года я ехал с подругой химиком на машине в Мендочино, Калифорния. Она спала. Каждые выходные я отправлялся на север в мой небольшой домик. Три часа за рулем. Мне нравилось водить по ночам: руки заняты, мысли свободны. Той ночью я размышлял о предложенном мною эксперименте по секвенированию[15].

Мюллис, сотрудник молодой биотехнологической компании Сеtus, долго вынашивал идею, которая должна была заметно облегчить расшифровку нуклеотидной последовательности ДНК. Длинные цепочки ДНК состоят из звеньев-нуклеотидов четырех типов — их обозначают буквами А.С.Т.G. Нуклеотидная последовательность — это тот порядок, в котором эти единицы выстраиваются в цепочку. Две нити знаменитой двойной спирали представляют последовательности, “дополняющие” друг друга: каждое А находится напротив Т в противоположной цепочке (и “привязано” к нему химически), а каждое С — напротив G. Для секвенирования применяют фермент, который копирует ДНК в процессе деления клетки. Чтобы заставить фермент (ДНК-полимеразу) двигаться вдоль цепи, нужен так называемый праймер. Это короткий фрагмент ДНК, специально синтезированный в лаборатории, и комплементарный, соответствующий, начальному участку той ДНК, которую собираются секвенировать. Мюллис рассуждал так: если взять два праймера, по одному на каждую нить двойной спирали (а разные нити, как известно, задают разные направления движения), то фермент будет перемещаться вдоль ДНК одновременно и вперед, и назад. Последовательности обеих нитей будут расшифровываться одновременно. Это будет дополнительной проверкой точности ответа, поскольку если последовательность одной нити известна, то последовательность другой легко воспроизвести (по принципу “дополнительности”). Впрочем, как оказалось, именно такая схема не работает:

Затем Мюллиса озарило: пусть энзим копирует сегмент с двумя праймерами на противоположных концах. Теперь предположим, что цепи свежевыделенной ДНК благополучно разделили (этого легко добиться нагреванием). Если в растворе хватает молекул праймера, фермент будет обрабатывать каждую новую нить. Из двух экземпляров получатся четыре, из четырех — восемь, и так далее. Загвоздка только в том, что при той температуре, при которой нити ДНК разделяются, фермент теряет активность, и каждый раз приходится добавлять новую его порцию. Эту трудность, впрочем, можно преодолеть, если взять фермент термофильной бактерии — из тех, что обитают в горячих источниках и содержат термостойкие белки. Мюллис продолжает:

Идея повторять процедуру раз за разом могла показаться до невозможного скучной. Однако я потратил много времени на написание компьютерных программ и был знаком с понятием рекурсивных циклов — математических процедур, которые снова и снова применяют к результатам последнего вычисления. Опыт подсказывал мне, какая сила скрыта в рекурсивных процессах с экспоненциальным ростом. Процедура репликации ДНК, которую я себе представил, должна была быть именно таким процессом. В восхищении я стал прокручивать у себя в голове степени двойки: 2, 4, 8, 16, 32… С трудом вспомнилось, что два в десятой степени — это что-то около юоо и что, следовательно, два в двадцатой примерно равно миллиону. Я остановил машину у поворота, откуда открывался вид на долину Андерсона. Из ящичка для перчаток я достал карандаш и бумагу. Нужно было проверить мои расчеты. Дженнифер, мой сонный пассажир, яростно возражала против такой задержки и против включенного света, но тут я заявил, что открыл нечто фантастическое. Не впе-чатлившись, она опять заснула. Я убедился, что два в двадцатой больше миллиона, и поехал дальше.

Утром в понедельник Мюллис, переполняемый восторгом, рассказал коллегам из корпорации Сеtus о своем методе, которому уже выдумал название — полимеразная цепная реакция, или ПЦР. Однако они сохраняли упрямое безразличие — разумеется, только до тех пор, пока не было доказано, что метод работает.

Вот, по крайней мере, та версия, которой придерживается Мюллис, но она не очень хорошо согласуется с воспоминаниями остальных. Ошибки, которые Мюллис допускал, работая в лаборатории, равно как и его утомительная склонность все преувеличивать, не слишком располагали к нему коллег. То, что ему тогда не очень доверяли, отчасти объясняет, почему идея ПЦР, впервые изложенная на лабораторном семинаре, встретила такой холодный прием. Но была и еще причина: как отмечал один из тогдашних сослуживцев Мюллиса, самое смешное в истории с ПЦР — то, что метод родился вовсе не из размышлений над какой-нибудь конкретной проблемой. Он оказался полезным для скромных задач, которыми занимался Мюллис, однако потом нашлись и другие применения, и их становилось все больше. Метод превратил Cetus в одну из ведущих биотехнологических компаний Америки и кардинально изменил ситуацию в биологии, биотехнологиях, сельском хозяйстве и фармацевтической промышленности. Теперь каждая биологическая лаборатория располагает специальным автоматическим устройством для “размножения” ДНК методом ПЦР. ПЦР позволяет получить осязаемое количество ДНК из образцов, содержащих всего несколько ее молекул — вроде пятна крови или спермы. Большинство биологов так до сих пор и не может понять, почему эта мысль пришла в голову не им, а Мюллису.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*