KnigaRead.com/

Станислав Галактионов - Биологически активные

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Станислав Галактионов, "Биологически активные" бесплатно, без регистрации.
Перейти на страницу:

Прежде всего перенос задачи на ЭВМ предполагает использование лишь вполне четких формулировок. Для этой цели разрабатываются специальные языковые средства. Чтобы иметь возможность принять вопрос:

«Какими проявлениями биологической активности обладает данное соединение?» – машина должна располагать информацией о том, какие виды биологической активности бывают вообще, и иметь возможность однозначно определить, о каком именно соединении идет речь. Обе проблемы не кажутся на первый взгляд непреодолимыми; так оно, конечно, и есть. Их решение, однако, наталкивается на массу мелких, но досадных трудностей. Пролистаем бегло весьма специальное (тираж 220 экземпляров) издание «Тезаурус информационно-поисковый по биологически активным соединениям», составленный Е.М. Михайловским, В.В. Авидоном и Р.К. Казаряном. Это, как пишут сами авторы, «терминологический словарь-справочник, в котором систематизированы лексические единицы дескрипторного информационно-поискового языка по биологической активности химических соединений и важнейшие парадигматические связи между терминами».

Поясняя это определение более пространно и с помощью менее специальных «лексических единиц», можно сказать, что речь идет о перечне и систематизации терминов, принятых в данной автоматизированной системе обработки данных, четком установлении связей между ними. Система разрабатывается для нужд фармакологических исследований. Сами авторы подчеркивают, что тезаурус «не представляет собой какой-либо новой классификации лекарственных средств». Тем не менее одно из его назначений – закрепление некой принятой в дальнейшем систематики биологических свойств химических соединений.

Рассматриваются три аспекта их действия. Так, по фармакологическому эффекту все препараты можно подразделить на 217 групп; алфавитный их перечень возглавляют «Агрегации тромбоцитов активаторы», замыкают – «эритропоэза стимуляторы», а между ними находим «антидепрессанты», «жажды стимуляторы», «противобактериальные», «снотворные» и т.д. Некоторые группы подразделяются на более мелкие, например, «противокашлевые» на «противокашлевые наркотические» и «противокашлевые ненаркотические»; все три входят в число упомянутых 217.

Другой способ классификации – по механизмам биологического действия: «аденилатциклазы активаторы», «гормонов антагонисты»... «серотонинподобные»... и так далее, вплоть до трудночитаемого «UDP-N-ацетилглюкозамингликопротеид N-ацетилглюкозами-нилтрансферазы ингибиторы»; всего 309 групп. Преобладают активаторы и ингибиторы различных ферментов.

Наконец, принята и классификация по месту действия (168 групп): «вестибулярный аппарат», «железы слюнные», «мозг спинной», «протопласт бактерий»... «ухо»... «яйца насекомых». С помощью такого словаря-систематики тем самым определено, какие виды биологической активности вообще существуют. Комбинируя термины, входящие в три описанных перечня, можно определять более узкие группы проявлений биологической активности. Например, сосудорасширяющие препараты – это те, которые принадлежат одновременно группе «спазмолитики» первого перечня и «гладкая мускулатура артерий» третьего перечня.

Очевидно, предполагается, что по мере накопления новых данных тезаурус будет систематически пополняться и видоизменяться.

При разработке языка для описания структуры химического соединения приходится сталкиваться с проблемами совсем иного рода.

Уж формулы как будто чуть ли не сами должны лезть в ЭВМ. Они-то, ЭВМ, в конце концов, и созданы для восприятия формул: один из наиболее популярных языков программирования – фортран образует свое название от английского FORmula TRANslation – «перевод формул».

К сожалению, речь идет вовсе не о структурных формулах, употребляемых в химии. То есть, конечно, можно в конце концов заставить ЭВМ работать и с такими формулами, но для этого понадобится создать соответствующий язык.

Таких языков было предложено несколько – в зависимости от особенностей задач, которые предстояло решать.

Какую информацию нужно ввести в машину для того, чтобы однозначно описать структуру какого-либо соединения? Пусть это будет, скажем, молекула этилового спирта.

Во-первых, должен быть дан перечень образующих ее атомов; пронумеруем их каким-нибудь образом. Например, номера (индексы) от 1 до 6 присвоим атомам водорода, 7 и 8 – углерода, 9 – кислорода:

Во-вторых, перечислим существующие в молекуле валентные связи; это можно сделать, указав пары индексов атомов, между которыми такие связи существуют: (1,7), (2,7), (3,7), (4,8), (5,8), (6,9), (7,8), (8,9). В рассмотренной молекуле этанола все связи одинарные; при необходимости можно, однако, привести отдельные наборы пар индексов, которые определяют положение одинарных, двойных, тройных связей.

Вот, казалось бы, и вся премудрость. Действительно, информация, представленная в такой форме, четко и однозначно описывает именно структуру молекулы этилового спирта. Беда, однако, в том, что такое описание может быть осуществлено очень многими способами. В самом деле, мы произвели нумерацию атомов в молекуле совершенно произвольным образом: сначала пронумеровали все атомы водорода, затем – углерода и кислорода. Но ведь ничто не мешает пронумеровать их в обратной последовательности, или по мере перемещения от одного конца молекулы к другому, или еще каким-нибудь образом. Каждый раз мы получим точное описание именно молекулы этанола; все такие описания будут совершенно эквивалентны.

Таким образом, каждая структурная формула может быть записана в ЭВМ многими, часто очень многими способами. Нетрудно даже было бы выписать пару формул с несколько устрашающим обилием факториалов, но не станем этого делать. Достаточно сказать, что для сравнительно немудреной и скромной по размерам молекулы этанола это число составит около четырех тысяч.

Если, таким образом, попытаться теперь составить словарь описанного нового языка – точнее, русско-«новоязычный» словарь, против русского термина «этанол» оказалось бы четыре тысячи синонимов, причем синонимов совершенно равнозначных, не различающихся никакими смысловыми оттенками в отличие от того, как это обычно бывает в «настоящих» языках.

Нечего и говорить о том, сколь неудобен в работе такой словарь; а ведь избранная нами в качестве примера молекула этанола – одна из простейших органических молекул; число же синонимов в принятом нами описании лавинообразно растет с увеличением размеров молекулы. Уже для знакомой нам пальмитиновой кислоты, тоже далеко не чемпиона по размерам и сложности строения среди интересующих нас соединений, выписать все синонимы просто нет технической возможности; для этого понадобилось бы гораздо больше бумаги, чем ее произведено за всю историю человечества.

По счастью, в составлении подобных словарей нет нужды, хотя отмеченная особенность рассмотренного языка описания химических структур создает немалые трудности при его использовании в процедурах прогнозирования биологической активности химических соединений по их формуле.

Пример из детского сада

Их разработано очень много, этих процедур, и сами авторы обычно признают, что все они весьма, весьма далеки от совершенства. При этом имеются в виду два обстоятельства: сравнительно невысокая надежность получаемых предсказаний и чисто эмпирический характер, отсутствие в применяемых алгоритмах явных представлений о конкретных молекулярных механизмах, лежащих в основе того или иного вида биологической активности.

В третьей главе были, правда, вкратце рассмотрены подходы, базирующиеся именно на таких представлениях, изучающие требования, предъявляемые рецептором к пространственной структуре молекулы биологически активного соединения, взаимодействие отдельных функциональных групп рецептора и биорегулятора и т.п. Однако работы этого направления лишь самые, самые первые ласточки. Они касаются очень немногих, очень узких групп аналогов природных биорегуляторов, для которых в силу благоприятного стечения обстоятельств вообще оказалось возможным применение таких аналитических приемов (как говорят: «ищем не там, где потеряли, а там, где светло»). Да и надежность получаемых при этом оценок также далеко не стопроцентная.

Область применения эмпирических процедур анализа связи «структура – активность» (или, как часто говорят, структурно-функциональных отношений) – вещества сравнительно простые, состоящие из десятков атомов. Это и понятно, поскольку все такие процедуры – вероятностные, основанные на соотнесении каких-то характерных признаков молекулы, степени выраженности ее биологической активности в какой-то тестовой системе. Чем крупнее молекула, тем большим числом признаков она характеризуется. Значительная их часть окажется при этом несущественной с точки зрения наличия или отсутствия данного вида биологической активности, а для выявления в этой ситуации немногих существенных признаков нужны данные об активности очень большого числа сходных по структуре молекул. На самом деле все обстоит как раз наоборот: сведений, относящихся к более сложным молекулам, относительно мало, хотя бы потому просто, что их труднее синтезировать.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*