KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии

П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн П.И.Бакулин, "Курс общей астрономии" бесплатно, без регистрации.
Перейти на страницу:

в афелии Q = a (l + e).(2.4)

За среднее расстояние планеты от Солнца принимается большая полуось орбиты Согласно второму закону Кеплера площадь СР1Р2 , описанная радиусом-вектором планеты за время Dt вблизи перигелия, равна площади СР3Р4 , описанной им за то же время Dt вблизи афелия (рис. 27, б). Так как дуга Р1Р2 больше дуги Р3Р4 , то, следовательно, планета вблизи перигелия имеет скорость большую, чем вблизи афелия. Иными словами, ее движение вокруг Солнца неравномерно. Скорость движения планеты в перигелии

(2.5)

в афелии

(2.6)

где vc – средняя или круговая скорость планеты при r = а. Круговая скорость Земли равна 29,78 км/сек « 29,8 км/сек.

Первый и второй законы Кеплера показывают, что третье и четвертое утверждения Коперника (см. § 36) неверны. Третий закон Кеплера записывается так:

(2.7)

где Т1 и T2 – сидерические периоды обращений планет, а1 и a2 – большие полуоси их орбит. Если большие полуоси орбит планет выражать в единицах среднего расстояния Земли от Солнца (в астрономических единицах), а периоды обращений планет – в годах, то для Земли а =1 и Т = 1 и период обращения вокруг Солнца любой планеты (2.8)

Третий закон Кеплера устанавливает зависимость между расстояниями планет от Солнца и периодами их обращения.

§ 41. Элементы орбит планет. Основные задачи теоретической астрономии

Движение планеты будет вполне определено, если известны плоскость, в которой лежит ее орбита, размеры и форма этой орбиты, ее ориентировка в плоскости и, наконец, момент времени, в который планета находится в определенной точке орбиты. Величины, определяющие орбиты планеты, называются элементами ее орбиты. За основную плоскость, относительно которой определяется положение орбиты, принимается плоскость эклиптики. Две точки, в которых орбита планеты пересекается с плоскостью эклиптики, называются узлами – восходящим и нисходящим. Восходящий узел тот, в котором планета пересекает эклиптику, удаляясь от ее южного полюса. Эллиптическую орбиту планеты определяют следующие 6 элементов (рис. 28): 1. Наклонение i плоскости орбиты к плоскости эклиптики. Наклонение может иметь любые значения между 0 и 180°. Если 0 Ј i

0, но не превосходит некоторого предела vc , то точка т будет двигаться по эллипсу, в одном из фокусов которого будет находиться точка С (рис. 30). Плоскость эллипса будет проходить через точки С, т и направление скорости v0 . Форма и размеры эллипса будут различны, смотря по величине скорости v0 . При малых v0 эллипс будет сильно сжатым, его большая ось будет лишь немного больше, чем Cm, и точка С будет находиться в фокусе, далеком от m. Если скорость v0 будет близка к скорости vc , но меньше ее, то эксцентриситет эллипса будет мал, его большая полуось будет лишь немного меньше, чем Cm, точка С приблизится к центру эллипса, но останется в фокусе, далеком от т. Если начальная скорость v0 = vc и будет направлена перпендикулярно к линии Cm, то точка m будет двигаться по кругу радиуса Сm. Если v0> vc , но не превосходит некоторого предела vп = vc , то точка т будет двигаться по эллипсу, но точка С при этом будет находиться в фокусе, близком к m, а большая ось эллипса будет тем больше, чем ближе v0 к vп . Если v0 = vп = vc , то точка т будет двигаться по параболе, обе ветви которой уходят в бесконечность, приближаясь к направлению, параллельному оси Ст. По мере того как точка т будет удаляться от тела М, ее скорость будет стремиться к нулю. Если v0> vп , то точка т будет двигаться по гиперболе, ветви которой уходят в бесконечность и, при очень большой начальной скорости, приближаются к направлению, перпендикулярному к оси Ст. По мере того как точка т будет удаляться по гиперболе, ее скорость будет стремиться к некоторой постоянной величине.

Наконец, в предельных случаях, когда v0 = Ґ, точка т будет двигаться по прямой тb, а когда v0 = 0, то по прямой тС. Скорость v точки т на любом расстоянии r от точки С получается из формулы

(2.18)

где а – большая полуось эллипса. Эта формула называется интегралом энергии. Если точка m движется по кругу, т.е. r = а, то из уравнения (2.18) следует

(2.19)

а если точка m движется по параболе, то а = Ґ и (2.20)

Скорость vc называется круговой скоростью, а vп – параболической скоростью. Скорость эллиптического движения vэ заключена в пределах 0

vп . Гиперболическая орбита определяется теми же

шестью элементами, что и эллиптическая (см. § 41), только вместо большой полуоси

а = Ґ дается перигельное расстояние q. Параболическая орбита определяется пятью элементами: i,

wT . Разность

ускорений wB ѕ wT по величине примерно такая же и направлена также от центра Земли, поскольку wB

150 км). Круговая скорость на высоте h меньше первой космической скорости v1к и определяется из уравнения (2.27) или по формуле . Элементы орбиты ИСЗ зависят от места и времени его запуска, от величины и направления начальной скорости. Связь между большой полуосью а орбиты спутника и его начальной скоростью v0 , согласно интегралу энергии (2.18), определяется формулой где r0 – расстояние точки выхода ИСЗ на орбиту от центра Земли. Обычно запуск ИСЗ производится горизонтально, точнее, перпендикулярно к радиальному направлению. Эксцентриситет орбиты е при горизонтальном запуске равен где q – расстояние перигея (ближайшей точки орбиты от центра Земли). В случае эллиптической орбиты (рис. 35) q = а (1 – е) = R + hП , где hП – линейная высота перигея над поверхностью Земли. Расстояние апогея (наиболее удаленной точки орбиты от центра Земли) Q = a (l + e) = R + hA , где hA – высота апогея над земной поверхностью. Если запуск произведен в перигее (чего может и не быть), то r0 = q = R + hП .

Зависимость формы орбиты ИСЗ от начальной скорости, с которой он выведен на орбиту, показана на рис. 36. Если в точке К спутнику сообщена горизонтальная скорость, равная круговой для этого расстояния от центра Земли, то он будет двигаться по круговой орбите (I). Если начальная скорость. в точке К меньше соответствующей круговой, то спутник будет двигаться по эллипсу (II), а при очень малой скорости по эллипсу (III), сильно вытянутому и пересекающему поверхность Земли; в этом случае запущенный спутник упадет на поверхность Земли, не совершив и одного оборота. Если скорость в точке К больше соответствующей круговой, но меньше соответствующей параболической, то спутник будет двигаться по эллипсу (IV). Примерное расположение эллиптической орбиты спутника в пространстве показано на рис. 37. Здесь i – наклонение орбиты спутника к экватору Земли,

– нисходящий узел, П – перигей орбиты, А – апогей орбиты, ^ – проекция точки весеннего равноденствия на земном экваторе, W – прямое восхождение восходящего узла, w – угловое расстояние перигея от восходящего узла.

Период обращения ИСЗ определяется по третьему закону Кеплера (2.23). Он равен или, если иметь в виду (2.25), Если а выражать в километрах, то при R = 6370 км и g = 981 см/сек2 период обращения спутника получится в минутах из следующей формулы: Основных причин, изменяющих орбиту ИСЗ, две: действие экваториального утолщения Земли и влияние сопротивления атмосферы Земли. Первая причина вызывает вековые возмущения восходящего узла DW и перигея Dw, которые легко учитываются по формулам небесной механики. Вторая причина вызывает уменьшение большой полуоси а, т.е. высоты h, и изменение формы орбиты. Поскольку плотность атмосферы быстро падает с высотой, основное сопротивление и уменьшение скорости спутник испытывает вблизи перигея. Вследствие этого высота апогея орбиты спутника с каждым оборотом заметно уменьшается (высота перигея уменьшается гораздо медленнее). В результате уменьшается большая полуось и эксцентриситет орбиты; орбита спутника постепенно округляется. Когда высота апогея становится сравнимой с высотой перигея, спутник испытывает торможение и теряет свою скорость вдоль почти всей орбиты, уменьшение высоты апогея и перигея происходит еще быстрее, и спутник, приближаясь по спирали к поверхности Земли, входит в плотные слои атмосферы и сгорает. Так как спутник с каждым оборотом снижается, то его потенциальная энергия уменьшается, часть ее переходит в кинетическую энергию. Это приращение кинетической энергии с избытком покрывает энергию движения, которая теряется при торможении. Поэтому скорость спутника не уменьшается, а наоборот, увеличивается, в то время как орбита уменьшается. Следовательно, по мере снижения спутника его период обращения вокруг Земли сокращается. Описанное возмущенное движение спутника дано в первом приближении. В действительности элементы орбиты спутника испытывают более сложные и разнообразные возмущения. Сжатие Земли, отличие гравитационного поля от поля сферически-симметричной притягивающей массы, вызывают не только вековые возмущения долготы восходящего узла

1), но те же возмущения могут возвратить кометы на эллиптические орбиты. Расстояние в афелии у некоторых комет достигает 50 000-100 000 а.е., а период обращения – нескольких миллионов лет. У немногих короткопериодических комет орбиты почти круговые. Наклонения орбит комет также разнообразны и часто превышают 90°, т.е. кометы движутся вокруг Солнца как в прямом, так и в обратном направлении. Движение отдельных метеорных тел очень сложное, но многие из них образуют метеорные потоки, движущиеся по орбитам, подобным орбитам комет. Более детально характеристики тел Солнечной системы будут рассмотрены в гл. X.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*