KnigaRead.com/

Г Тиxов - Есть ли жизнь на других планетах?

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Г Тиxов, "Есть ли жизнь на других планетах?" бесплатно, без регистрации.
Перейти на страницу:

Во всяком случае, наши наблюдения показали, что цвет этих протоков, или, как их называют, «каналов», одинаков с цветом больших темных пятен, которые уже давно были названы «морями».

Однако на Марсе воды мало, и морей в земном смысле там нет. И «моря» марсианские, и «каналы» представляют собой почти наверное места, покрытые растительностью.

Что же позволяет нам делать такое заключение?

Первым поводом к такому заключению было то, что цвет этих образований изменяется с марсианскими временами года весьма сходно с сезонными изменениями цвета земных листопадных растений.

Что же касается «каналов», то они должны иметь в ширину несколько десятков километров, чтобы быть видимыми с Земли в астрономические трубы. Возможно, что в середине этих «каналов» на почве или под почвой распространяется вода, которая и способствует проявлению растительной жизни. Малое количество влаги объясняет, почему «каналы» при очень хороших условиях наблюдения распадаются на отдельные участки, и «канал» получает вид цепочки.

Было еще одно затруднение для гипотезы о растительной жизни на Марсе. Дело в следующем. Из находящейся в листьях воды образуются при облучении солнечным светом (при воздействии хлорофилла) первые органические вещества — сахар и крахмал. При этом процессе, называемом фотосинтезом, выделяется в атмосферу кислород, которым дышат животные, а по ночам и сами растения.

Однако для дыхания растение потребляет значительно меньше кислорода, чем выделяет его днем. Между тем в атмосфере Марса углекислого газа приблизительно вдвое больше, чем в атмосфере Земли. Присутствие же кислорода на Марсе до настоящего времени с уверенностью еще не обнаружено.

Возникает вопрос: куда же уходит кислород из атмосферы Марса, если на нем есть растительность?

На это можно ответить следующим образом.

Марсианские растения выделяют кислород не в воздух, а через корни в почву. Поэтому почва Марса имеет розовато-желтый цвет, Несколько напоминающий цвет окисленных веществ (например, ржавчины). Для дыхания же растения получают кислород из почвы через корни.

Другое объяснение состоит в том, что тело марсианских растений пронизано воздухоносными камерами наподобие земных растений, живущих частично в воде, например водяные лилии, камыш и др.

Наверняка есть и другие возможные особенности приспособления марсианских растений к условиям среды.

Растения в суровых условиях существования

Марс находится в полтора раза дальше от Солнца, чем Земля, и получает тепла в два с половиной раза меньше. Климат Марса намного суровее земного. В полярных областях Марса зимой морозы доходят до 70–80 градусов.

На экваторе в полдень температура иногда поднимается до +10 и +15 градусов, но уже к закату Солнца падает до нуля и продолжает снижаться в течение ночи, доходя к рассвету до —45 градусов.

Огромные суточные колебания температуры даже на экваторе объясняются также разреженностью атмосферы Марса.

Среднегодовая температура Марса значительно ниже нуля, тогда как на Земле она равна +15 градусов по Цельсию.


Тянь-шаньские ели в долине Малой Алма-Атинки.


Однако суровый климат Марса не страшен для растений.

На Земле в Якутской АССР, в районе Верхоянска и Оймякона, климат тоже не менее суров. Между тем там живет около 200 видов растений.

Приспособляемость растений к низким температурам очень велика. Так, например, растение морозник белоцветный цветет зимою, нередко под снегом. Нераспустившиеся бутоны ложечной травы на сибирских берегах Ледовитого океана переносят зимние морозы до —46 градусов, иногда без снега, и распускаются с наступлением следующего лета.

Резкие колебания температуры на Марсе от восхода Солнца к полудню сравнимы с колебаниями на Памире. Здесь суточные колебания на поверхности почвы доходят до 60 градусов. Средняя годовая температура в долинах Памира отрицательная и равняется для Мургаба —0,9 градуса. Тем не менее памирская растительность весьма разнообразна.

Резкая смена температуры дня и ночи, больше всего сказывающаяся на биологии растения, является основной причиной сильного повышения морозоустойчивости растения в условиях высокогорья. Происходит постоянная закалка растений.

Примеров приспособляемости растений к низким температурам можно было бы привести множество.

Незначительное количество воды и, следовательно, малая влажность атмосферы Марса также напоминают климатические условия Памира — высокогорной пустыни. Переваливая через высочайшие хребты, окружающие высокогорную пустыню со всех сторон, воздушные течения иссушаются, оставляя влагу в виде грандиозных ледников и снежников. В долины Памира воздушные течения приходят уже с ничтожным содержанием влаги. В летние полуденные часы, когда температура бывает наиболее высокой, относительная влажность не превышает 9—45 процентов. Чтобы понять значение этих цифр, достаточно указать, что падение относительной влажности ниже 50 процентов уже неблагоприятно отзывается на человеке.

Дикие растения на Памире прошли длительный путь развития и приспособились к суровым условиям высокогорья. Культурное же растение попадает на Памире в совершенно новую обстановку, какой оно не встречает нигде в земледельческих зонах земного шара. Однако и для развития культурного растения все крайности климата не являются непреодолимыми препятствиями.

Памирская закалка дает растению широкие возможности для перенесения заморозков. Она делает даже совершенно нестойкий к заморозкам картофель способным переносить отрицательные температуры в 7–8 градусов. Яровые двурядные ячмени с низкой морозоустойчивостью также становятся устойчивыми к заморозкам.

Своеобразная обстановка Памира преобразует растения, обладающие в обычных условиях высокими показателями испарения влаги, в растения, мало испаряющие влагу.

Значит, и чрезвычайная сухость марсианской атмосферы не может препятствовать существованию растений.

Кислородный голод на Марсе тоже не может препятствовать развитию растений. Подводные и болотные растения на Земле приспособились к уменьшенному количеству кислорода; они имеют значительные запасы воздуха внутри своего тела в виде широких межклетников, дыхательных корней и других приспособлений.

То же может быть и на Марсе. Для фотосинтеза растение использует углекислый газ, а его в атмосфере Марса вдвое больше, чем в земной. При фотосинтезе растение выделяет кислород, образующийся разложением воды. Так как кислород необходим растению для дыхания, то при фотосинтезе оно может не только выделять его в атмосферу, но и сохранять в различных частях, например в корнях.

В земной атмосфере роль фильтра, поглощающего гибельные для жизни коротковолновые ультрафиолетовые лучи, играет озон. В атмосфере Марса озона нет. Но отсутствие озона не может служить причиной отрицания жизни на Марсе. За многие сотни миллионов лет растения могли приспособиться к условиям существования, в частности, к действию коротковолновых ультрафиолетовых лучей. Зарождение и развитие жизни на других планетах может идти своими путями, отличными от земных.


Тянь-шаньские ели на высоте 2 400 метров, снятые в инфракрасных лучах.


Ведь жизнь есть явление закономерное. Это результат эволюции материи. Если бы в земной атмосфере не появился озон, то жизнь все равно существовала бы, приспособившись к коротковолновым ультрафиолетовым лучам.

Можно говорить о гибельном действии коротковолновых ультрафиолетовых лучей на бактерии, но лишь современные, а не древнейших геологических периодов.

Пионерами жизни на земле были микроорганизмы. Значительно позже появились растения, а в результате их жизнедеятельности — кислород. Из кислорода образовался тот слой озона в 3 миллиметра толщиною (при нормальном давлении), который поглощает ультрафиолетовые лучи, гибельные для современных земных бактерий и других организмов.

Нам не известны пока другие поглотители ультрафиолетовых лучей в древнейшей земной атмосфере. Были они или нет — не в этом суть. Факт тот, что пионеры жизни на Земле не боялись ультрафиолетовых лучей.

В Нальчике в 1950 году профессором С. М. Токмачевым проведены очень интересные исследования. Сделаны два опыта. Взяты по шесть семян кукурузы на влажной пропускной бумаге и помещены под колокол воздушного насоса объемом 5,5 литра и, для контроля, около колокола. Температура во время опытов в колоколе держалась в пределах 20–22,5 градуса днем и ночью. Это соответствует летней марсианской температуре в зоне незаходящего Солнца. Давление воздуха поддерживалось, как на поверхности Марса.

В первом опыте воздух в колоколе менялся два раза в сутки и растения находились в течение трех суток под давлением от 20 до 70 миллиметров ртутного столба.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*