KnigaRead.com/

Б. Суслов - Вода

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Б. Суслов, "Вода" бесплатно, без регистрации.
Перейти на страницу:

Естественно, он будет занимать меньший объём, почему при движении винта и не увеличивается давление. Лёд III — это лёд, который тонет в воде.

Если поднять давление до 3 тысяч атмосфер и охладить цилиндр до минус 80 градусов, то образуется лёд II, который плотнее обыкновенного льда на 22 процента. Быстро развинтив прибор, можно успеть высыпать этот лёд на стол. При этом будет наблюдаться интересное явление: лёд II, увеличиваясь в объёме, станет вспучиваться и рассыпаться в порошок обыкновенного льда (льда I), подобно тому как растёт в своём объёме и рассыпается известь при гашении её водой.

При давлениях немногим выше 20 тысяч атмосфер вода даёт новый лёд, — лёд VI, который плотнее воды на 9, 5 процента. Чтобы расплавить такой лёд, надо нагреть его до плюс 80 градусов. Это уже, так сказать, «горячий» лёд.

Теперь предположим, что мы сжали воду в цилиндре до нескольких тысяч атмосфер и после этого выставили его на мороз. Лопнет ли наш цилиндр при замерзании воды? Нет, не лопнет. Ведь он выдержал давление, под которым находилась вода! При застывании воды в таких условиях давление в цилиндре не возрастает, а падает, так как образующийся лёд плотнее воды и занимает меньший объём.

Особенность воды, связанная с увеличением объёма при замерзании, имеет место только при давлениях ниже 2000 атмосфер. При более высоких давлениях эта особенность исчезает, и поведение воды становится похожим на поведение всех других веществ.

Следовательно, нельзя без оговорки утверждать, что лёд всегда плавает в воде и плавится при нуле градусов. При известных условиях лёд может быть тяжелее воды и иметь температуру плавления даже плюс 80 градусов.

7. Единица теплоты

При сжигании топлива — дров, угля, нефти и т. д. — выделяется тепло. Этим теплом можно нагреть, например, воду, превратив её из жидкости в пар. Пар за счёт своего тепла может совершать работу: поднять тяжёлый молот, привести в движение колёса паровоза, вращать винт океанского парохода. Измерять количество теплоты, заключённой в нагретом теле, мы можем по той работе, которую совершает это тело при своём охлаждении. Однако практически оказалось более удобным измерять теплоту особой единицей, которую при желании можно легко пересчитать в единицы работы. Условились считать единицей теплоты то её количество, которое необходимо сообщить одному грамму воды, чтобы нагреть его на один градус. Эту единицу, как мы уже говорили, называют калорией. Вы видите, что и здесь воде, как носителю определённых тепловых свойств, отведено весьма почётное место.

Если поставить холодный утюг на горячую плиту, часть тепла от плиты перейдёт к утюгу, и он нагреется. Получая тепло, вода, как и любое другое вещество, конечно, нагревается тоже. Но и здесь вода сохраняет своеобразный характер: один грамм воды требует для нагревания на один градус значительно больше тепла, чем один грамм любого другого вещества. Равное по весу количество свинца при нагревании на то же число градусов требует тепла в тридцать раз меньше, железо в девять раз, а кирпич примерно в пять раз меньше, чем вода. Только немногие тела пытаются в этом отношении соревноваться с водой — это дерево, спирт, эфир и некоторые другие; они требуют приблизительно половины того количества тепла, которое нужно для воды. Даже лёд, представляющий собой ту же воду, только в твёрдом состоянии, требует в два раза меньше тепла по сравнению с жидкой водой.

Способность тела поглощать то или другое количество теплоты при нагревании одного грамма его на один градус называют удельной теплоёмкостью (величина удельной теплоёмкости воды участвует в очень многих теплотехнических расчётах). И мы можем сказать, что удельная теплоёмкость жидкой воды — самая большая среди теплоёмкостей других тел. Здесь вода не проявляет какой-либо аномалии, она только стоит особняком в ряду других веществ и отличается от них только в количественном отношении.

Большая теплоёмкость воды имеет огромное значение и в природе, и в нашей практической жизни, бывая в одних случаях выгодной, а в других нежелательной.

Чтобы вскипятить чайник воды на электрической плитке, приходится затрачивать сравнительно много энергии, что совсем невыгодно отражается на показаниях электросчётчика. Но когда мы принимаем ванну, то с удовольствием ощущаем продолжительное время приятную теплоту; имея меньшую теплоёмкость, вода охлаждалась бы быстрее. Применение водяного отопления зданий или, наоборот, охлаждения водою машин также связано, помимо удобства использования воды, с выгодным её отличием — большой теплоёмкостью.

Большой теплоёмкостью воды в немалой степени определяется и климат нашей планеты.

Теплоёмкость твёрдых пород, составляющих поверхность суши, по сравнению с водой мала, и хотя поверхность суши поглощает лишь ничтожную долю падающей на неё солнечной энергии, нагревается она очень сильно, — в течение суток температура почвы в некоторых районах может изменяться на десятки градусов. Горные породы и почва плохо проводят тепло, и в основном тепло от суши передаётся воздуху. В летнее время, например, воздух получает тепла от песчаной пустыни в 130 раз больше, а от гранита в 75 раз больше, чем от поверхности открытого моря.

Теплоёмкость воды, как мы уже знаем, велика. Кроме того, верхние слои морской воды очень подвижны. Морские течения и волны постоянно перемешивают их. В результате летом вода, хотя и поглощает огромное количество солнечного тепла, остаётся холоднее поверхности суши и нагревает морской воздух слабее, чем суша. Вполне естественно поэтому, что в летнее время над морем воздух прохладнее, чем над материком.

Наступает осень. Суша очень быстро передаёт небольшой запас тепла воздуху и в дальнейшем уже не нагревает его. Иное дело — водные пространства. Поглотив в летние дни огромные количества солнечного тепла, океаны и моря в течение всей зимы непрерывно подогревают воздух. Поэтому зимой на одних и тех же широтах температура воздуха над морем много теплее, чем в глубине материка.

Неравномерное нагревание суши и моря приводит к одному важному явлению в жизни нашей атмосферы. Жители прибрежных стран уже давно заметили, что летом ветер в нижних слоях атмосферы дует с моря, а в зимние месяцы — с суши. Это и понятно. Ведь летом воздух над морем прохладней, чем над сушей. Чем холоднее воздух, тем он плотнее. Поэтому и давление его больше, чем давление тёплого воздуха. Благодаря этому морской воздух устремляется на сушу, к слоям с более высокой температурой и вытесняет их вверх. Зимой картина обратная: холодный воздух суши течёт к морю — к слоям менее плотного воздуха. Такие ветры получили название муссоны (от арабского слова, означающего сезон). Они существенно смягчают климат не только побережья, но и районов, расположенных далеко от моря.

Море в значительной степени сглаживает температурные колебания на суше в течение года. Это хорошо можно проследить на разнице между средними зимними и летними температурами для различных районов Советского Союза. Климат нашего материка в значительной степени смягчается Атлантическим океаном. Чем дальше от океана, тем больше эта разница. Для Ленинграда, Минска, Киева, например, она составляет около 25 градусов, для Архангельска, Москвы, Воронежа и Ростова около 30 градусов, для Урала и средней и нижней Волги — 35 градусов, а для Чкалова и Уральска — почти 40 градусов.

На северо-востоке Сибири разница между средними зимними и летними температурами достигает наибольшего значения для всего земного шара: в Якутске она равна 62,3 градуса, а в Верхоянске 65,9 градуса, несмотря на близость Тихого океана. Объясняется это тем, что Якутия получает от океанов наименьшее количество тепла. От Атлантического океана она находится очень далеко, с юга и востока её отделяют от Тихого океана высокие горные цепи, а с Северного Ледовитого океана в Якутию поступает холодный воздух. Поэтому в районе Верхоянска бывают и самые сильные морозы — до минус 70 градусов.

О смягчающем влиянии Чёрного моря говорит небольшая разница между средними зимними и летними температурами на Черноморском побережье: в Симферополе разница составляет 22,6 градуса, в Ялте — 20,4 градуса, а в Сочи всего 17,5 градуса.

Дальнейшее знакомство с поведением воды при её нагревании сталкивает нас ещё с одной особенностью, выделяющей воду из ряда других веществ.

Как правило, теплоёмкость тела — величина не постоянная. Она возрастает по мере повышения температуры.

Чем выше температура, тем больше надо сообщить телу тепла, чтобы нагреть его ещё на один градус. Исключением из этого правила снова является вода.

Действительно, при нагревании воды от нуля градусов её теплоёмкость не возрастает, как у других тел, а падает. При температуре около 27 градусов теплоёмкость воды достигает своего наименьшего значения; она меньше теплоёмкости при нуле градусов примерно на один процент. При дальнейшем нагревании теплоёмкость начинает расти, и этот рост продолжается даже при температуре выше ста градусов (когда вода нагревается под давлением).

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*