Ирина Богданова - Концепции современного естествознания. Шпаргалки
В физику входят также термодинамика (тепловые процессы), физика колебаний (волн), оптика, физика поля, акустика, атомная физика, физика элементарных частиц и др.
На физике базируется химия , включающая неорганическую и органическую части, которая изучает химические элементы, их свойства, превращения и соединения. На химии базируется биология , изучающая клетку и все производное от нее, то есть живую материю во всем многообразии. Биология включает в себя ботанику (растительное царство); зоологию (мир животных); анатомию; физиологию; эмбриологию (строение; функции и развитие организма); цитологию (живая клетка); гистологию (свойства тканей); палеонтологию (ископаемые останки); генетику (проблемы наследственности и изменчивости).
На трех основных науках основаны все науки о Земле – геология, география, экология и др.). А на этой единой базе – космология , которая изучает Вселенную как целое и включает астрономию и космогонию .
17. Начальный этап развития естествознания
Первые знания о природе человек получил еще в первобытном обществе. Это были знания, выявленные в результате систематического наблюдения одних и тех же явлений и одних и тех же свойств предметов или полученные в результате жизненного опыта (дерево не тонет, камень тонет, огонь горячий, лед холодный и т. п.). Знания древних людей были ненаучными, они никак не систематизировались и не имели никакой теоретической базы, а касались только повседневных наблюдений и повседневного опыта.
В странах Древнего Востока (Месопотамия, Египет) знание имело более широкую форму, существовали науки, но они были сплетены воедино с мистическими и религиозными аспектами. Настоящей родиной естественных наук является Греция (VI–IV вв. до н. э.). Греческая наука была рациональна (не прибегала для объяснения фактов к помощи религии и мистики) и системна (стала классифицировать явления и объекты изучения).
Развитию науки способствовало особое устройство греческих городов-государств – с демократическими нормами жизни и изобилием общественных законов. Аналогичный способ организации был применен и в области знаний: если человеческое общество подчиняется законам, то и природа должна подчиняться своим законам. Особенности рабовладельческого способа производства дали в греческом обществе четыре приоритетных занятия – политика, война, искусство, философия; под философией и понималась зарождающаяся наука. Созерцательность и абстрактно-умозрительный взгляд на мир сформировали два основных принципа греческой науки: мышление понятиями и создание всеобъемлющих философских теорий.
Научные изыскания греков не имели практического значения, это было движение чистой философской мысли: планиметрия Гиппарха, геометрия Евклида, апории элеатов, диогеновский поиск сущности человека. Целью научного познания было изучение процесса превращения первоначального Хаоса в Космос. Так появились труды Фалеса, Анаксимандра, Гераклита, Диогена. Единственным инструментом познания они признавали человеческий разум. Греки достигли больших успехов в математике (Пифагор, Евклид, Платон), в учении об атоме (Демокрит, Левкипп), в учении о неуничтожимости материи (Эмпедокл), но естествознание как научную программу создал Аристотель.
18. Представления Аристотеля о движении
Аристотель был автором многочисленных трудов о природе – «Физика», «О небе», «Метеорологика», «О происхождении животных» и др. Впервые в мире он обратил внимание на закономерности движения физических тел и тем самым дал начало разделу физики – механике. Движение Аристотель определял как изменение положения тела в пространстве, аристотелево пространство было заполнено прозрачной материей, аналогичной воздуху. Ему принадлежит высказывание «природа боится пустоты», то есть пространство заполнено подобием эфира. Движение создается без причины движения, самодвижущееся тело имеет в себе источник движения. Он различал движение естественное и насильственное, местное (для тяжелых тел) и огненное (для легких).
В рассуждения Аристотель ввел понятие силы , к которому относится три основных вида силы – тяга, давление и удар. Рассматривая сложное вращательное движение, он вывел определение момента силы, а для естественного падения тела вывел закон V = F/w, где V – скорость, F – сила стремления тела к своему естественному месту, w – сопротивление воздуха.
Согласно закону Аристотеля скорость падения тела зависела от его массы. Эта точка зрения продержалась до времен Галилея. То есть тяжелые тела в силу своей массы устремляются к земле (естественному месту), а легкие тела из-за своей легкости устремляются к огненному эфиру, расположенному за слоем воздуха, высоко к небу, к огню. Небесные тела из «земных» принципов движения он исключал: они движутся по совершенной окружности и для движения силы им не требуется. Небесные тела подчиняются небесным законам (их движения вечны и неизменны, не имеют начала и конца), неприменимым к земным телам, несовершенным по своей природе. Несовершенные земные тела могут двигаться только с приложением внешней силы, источниками движения для них служат другие тела. Аристотель считал, что движение существует вечно и что первое движение в мире породил перводвигатель, под которым он понимал бога. Физическое взаимодействие он понимал как применение силы движущего к движимому (то есть действие сугубо одностороннее).
19. Представления Галилея о механике
Представления Аристотеля о механике продержались до времени Галилея. Галилей создал новую механику, отвергающую принципы Аристотеля. Он установил физические законы для движения тел, ввел определения для силы, скорости, ускорения, равномерного движения, инерции, понятия средней скорости и среднего ускорения, впервые сопоставил понятие силы с математическим понятием вектора (при определении характера движения в зависимости от приложенной силы, он исходил из направления этой силы или взаимодействия сил), сформулировал четыре аксиомы механики (две о свободном падении, одна – по поводу инерции и одна по поводу относительности движения):
1. Закон инерции. Свободное движение по горизонтальной плоскости происходит с постоянной по величине и направлению скоростью.
2. Свободно падающее тело движется с постоянным ускорением и конечная скорость тела, падающего из состояния покоя, связана с высотой, которая пройдена к этому моменту.
3. Свободное падение тел можно рассматривать как движение по наклонной плоскости, а горизонтальной плоскости соответствует закон инерции.
4. Внутри равномерно движущейся (так называемой инерциальной) системы все механические процессы протекают так же, как и внутри покоящейся.
Принцип относительности он вывел в 1632 г. при помощи мысленных экспериментов, путем абстракции. Принцип предполагает, что траектория падающего тела отклоняется от вертикали из-за сопротивления воздуха и в безвоздушном пространстве тело упадет точно над точкой, из которой началось падение.
Рассуждая о падении тела с мачты движущегося с абсолютно постоянной скоростью корабля, Галилей замечал, что наблюдателю, стоящему на берегу, траектория падения тела представится в виде параболы, поскольку определяющим траекторию тела фактором будет сам корабль, сообщивший телу начальную скорость V0, и траектория падения тела с мачты равносильна траектории снаряда, вылетающего из пушки, то есть тело для наблюдателя падает по параболе.
Рассматривая принцип относительности, Галилей исходил из относительности восприятия движения корабля (для наблюдателя на берегу корабль движется, для наблюдателя внутри корабля – стоит на месте). Потребовалось почти 300 лет, чтобы появилась теория относительности Альберта Эйнштейна.
20. Законы механики Ньютона
I закон, или закон инерции, открытый еще Галилеем: всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока оно не будет вынуждено изменить его под действием каких-то сил.
II закон: изменение импульса тела в единицу времени равно действующей на него силе и происходит в направлении ее действия. F = mи· a, где F – вынуждающая сила, a – ускорение, mи – инерциальная масса.
Второй закон Ньютона связывает изменение импульса тела (количества движения) с действующей на него силой и является ядром механики. Он был революционным для своего времени, но неприменим в современной физике, так как Ньютон считал, что масса не зависит от скорости. Ньютон рассматривал массу как меру инертности, а ускорение и инерцию как равные по величине противодействия, направленные в противоположные стороны, то есть чем массивнее тело, тем меньшее ускорение можно ему придать.