KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Хенрик Свенсмарк - Леденящие звезды. Новая теория глобальных изменений климата

Хенрик Свенсмарк - Леденящие звезды. Новая теория глобальных изменений климата

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "Хенрик Свенсмарк - Леденящие звезды. Новая теория глобальных изменений климата". Жанр: Прочая научная литература издательство -, год -.
Перейти на страницу:

Разобраться в эффекте Миланковича — одна из важных задач в списке дел космоклиматологии. Подойти к решению этого вопроса можно путем создания простых теоретических моделей, в которые будут заложены вариации космических лучей и добавлены некоторые другие процессы, происходящие на земном шаре. Теоретиков должен воодушевить тот факт, что ледниковые периоды последних двух миллионов лет исключительно хорошо изучены геологами: легкодоступные отложения на небольших океанских глубинах, керны, извлекаемые при бурении ледниковых щитов, поверхностные слои земной коры дали ученым массу разнообразных сведений. Но чем глубже вы спускаетесь под землю и чем дальше уходите назад во времени, тем темнее и туманнее становится ваше понимание изменений климата и их возможных причин.

Узнать лучше Землю

Первый известный ледник мелового периода — ледник, которому около 140 миллионов лет, — был открыт в 2003 году. Это открытие положило конец спорам между геологами о том, приходилась ли эпоха царствования динозавров на ледниковую эру. До 1990-х годов не было надежных свидетельств о том, что в древности Земле пришлось столкнуться с ужасным холодом, который полностью заковал ее в ледяной панцирь. Эти важные находки, обнаруженные так недавно, иллюстрируют то, как мало мы знаем о климатической истории Земли. Какие еще сюрпризы припасли для нас древние горы?

В 1960-х началось активное бурение морского дна и ледниковых щитов, благодаря чему мы имеем сегодня большую часть сведений о климате прошлого. Однако древнейшему океанскому дну лишь около 180 миллионов лет, а керны, извлекаемые из ледниковых щитов, покрывают еще более короткие промежутки времени. Возраст старейших горных пород — 3,8 миллиарда лет, таким образом, 95 процентов земной истории могут быть объяснены лишь за счет геологических изысканий на континентах, а эти изыскания сопряжены с колоссальными трудностями.

На суше возможности геологов ограничены: они могут изучать лишь те породы, которые случайно оказались доступными. Это могут быть пласты, обнажившиеся благодаря эрозии, или подповерхностные слои, сквозь которые пробиваются шахтеры, горнопроходчики и нефтеразведчики. На суше очень редко бурят скважины чисто в исследовательских целях. Как астрономы испытывают потребность в создании более мощных телескопов, так и геологам нужны новые возможности, чтобы лучше исследовать земную кору. В 2004 году симпозиум по климату прошлых эпох, организованный Национальным научным фондом США, призвал разработать грандиозную программу континентального бурения, взяв за образец успешный опыт бурения в океане.

Пока суд да дело, можно попытаться обработать уже имеющуюся информацию с помощью простых расчетных моделей, которые соединили бы данные об интенсивности космических лучей со сведениями о других действующих агентах. Уже прозвучало предложение датских ученых расширить временной охват таких моделей и выйти за пределы двух миллионов лет. Начать следует с эпохи фанерозоя (это последние 500 миллионов лет) — здесь связь климата с теми периодами, когда Солнечная система пересекала спиральные рукава, достаточно понятна, — затем перейти к протерозою с его эпизодами «Земли-снежка» и, наконец, добраться до ранних гадея и архея, когда под относительно слабым Солнцем на Земле зародилась жизнь.

Удивительно, что, несмотря на некоторые погрешности, сигналы, оставленные космическими лучами, недвусмысленно звучат во всех геологических данных. Среди агентов, которые могли бы воздействовать на климат, космические лучи — единственные, которые оставляют четкий след при любом временном масштабе, будь то миллиардолетия или месяцы.

Что ж, пусть бремя ответственности теперь лежит на тех, кто хочет ввести в климатическое действо других участников — дрейф континентов, вулканы, падения комет и астероидов, океанские течения, парниковые газы, — но только они должны продемонстрировать, каким образом на разных этапах истории эти участники изменяли или отменяли приказы леденящих звезд.

Жизнь в яростной Вселенной

В начале двадцать первого века одна из важнейших задач для исследователей — поиск жизни на других планетах. Ученые продолжают искать следы живых организмов (существующих ныне или существовавших в прошлом) на Марсе, Европе и других «жизнепригодных» объектах Солнечной системы. Но, помимо этого, астробиологи ищут планеты, которые, подобно Земле, обращаются вокруг других звезд. И Европейское космическое агентство, и Национальное управление США по аэронавтике и исследованию космического пространства вынашивают честолюбивые планы отправить в космос целые флотилии телескопов — реализация этих планов начнется с 2015 года. Телескопы будут «обучены» распознавать инфракрасные лучи, испускаемые водяным паром и другими газами в атмосфере внесолнечных планет, а присутствие этих составляющих может послужить признаком существования там жизни.

Философские вопросы о существовании иной жизни в нашей яростной Вселенной перестают быть уделом умозрительных рассуждений — в наши дни они тесно увязываются с развитием космонавтики, обеспечивающим возможность конкретного поиска жизни вне Земли. Современная астрофизика хорошо знает, что Вселенная устроена парадоксальным образом: чтобы плодиться и размножаться, живым организмам нужны мягкие и теплые условия, но само создание и дальнейшее поддержание таких условий сопряжено с событиями, в высшей степени опасными для жизни, — это противоречие существует от начала времен.

Атомы наших тел были выкованы в колоссальном очаге Большого взрыва и кузницах вспыхивающих звезд. Под воздействием космических лучей при температуре минус 250 градусов Цельсия они слепились в необходимые для жизни соединения, включая воду и моноокись углерода. Сама Земля сформировалась в результате столкновений астероидов, врезавшихся друг в друга на огромных скоростях, а океаны, возможно, произошли из кометного льда. Столкновения Земли с астероидами и кометами, хотя и сильно уменьшившиеся в количественном отношении, время от времени продолжают сеять смерть и разрушения на планете.

Недавно астробиологи попытались оценить роль магнитного поля в создании и поддержании условий жизни на Земле, а также, возможно, и на внесолнечных планетах. В 2005 году Европейское космическое агентство разработало долгосрочную программу изучения и мирного освоения космоса. Доклад об этой программе, озаглавленный «Взгляд во Вселенную: космическая наука в Европе в 2015–2025 годах», был подготовлен под руководством итальянского астрофизика Джованни Биньями. Авторы доклада в самом начале своей работы говорят о необходимости понять, какие физические условия влияют на появление жизни во Вселенной, и подчеркивают магнитную взаимозависимость между звездой и ее системой планет:


«Условия жизни на Земле поддерживает медленно эволюционирующее Солнце, которое обеспечивает почти постоянную освещенность планеты, а также защищает нас от высокоэнергетических частиц, поступающих от сверхновых Галактики. Солнечный ветер, срывающийся с горячей солнечной короны, пронизывает всю гелиосферу и выносит вихревые магнитные поля к периферии Солнечной системы, что решительным образом снижает приток космических лучей. Таким образом, чтобы дать полную характеристику условий, необходимых для поддержания жизни, особенно в ее развитой форме, мы должны как можно глубже понять магнитную систему Солнца, ее изменчивость, ее взрывчатый характер, проявляющийся в гигантских выбросах солнечного вещества, и взаимодействия между гелиосферой и магнитосферами и атмосферами планет»[108].


Таким образом, вклад космоклиматологии сейчас более чем своевременен, ведь она показала, что во время бурного звездообразования интенсивные космические лучи преодолевают магнитную защиту Солнца. До сих пор жизни удавалось устоять даже в суровые времена «Земли-снежка». Что помогает нашей планете оставаться обителью жизни? Может быть, ее особенное местоположение в Галактике? Или тут работает гелиосфера, окружающая Землю и заботливо охраняющая ее? Если да, насколько необычна наша планета в этом отношении? И произошла ли жизнь на Земле только благодаря отсутствию космических лучей, то есть благодаря сильному солнечному ветру, испускаемому юным Солнцем? Ответы на эти вопросы помогут астробиологам сузить их список планет для поисков внеземной жизни.

Есть еще одна находка, которая рассказывает нам что-то очень важное об условиях жизни на Земле, — пусть даже мы не вполне понимаем, в чем смысл этого рассказа. Существует на удивление тесная связь между крайними значениями интенсивности космических лучей и крайними значениями колебаний в продуктивности биосферы (включая те пики высокой и низкой продуктивности, которые твердо установлены современной наукой) — связь, отчетливо проявляющаяся при подсчете углерода-13. Очевидно, космоклиматологический «стресс» может оказывать как благотворное, так и вредоносное воздействие на продуктивность биосферы. Возьмем для примера цветущие растения. Что вызвало их появление? Может быть, этому способствовало наступление ледников, сопровождавшееся бодрящими погодными условиями, быстрой континентальной эрозией и благодатным распространением питательных веществ?

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*