KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Леонард Млодинов - Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства

Леонард Млодинов - Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Леонард Млодинов, "Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства" бесплатно, без регистрации.
Перейти на страницу:

В 1866 году, после того, как Менделеева назначили профессором химии в Петербургском университете, в тридцать два года он решил составить учебник. Санкт-Петербург основал за полтора века до этого Петр Великий, и город к середине XIX века сделался одним из интеллектуальных центров Европы. Университет Петербурга был лучшим в России, но Россия отставала от остальной Европы, и Менделеев, изучив российскую химическую литературу, пришел к выводу, что приличного современного учебника, пригодного для преподавания, не имеется. И он взялся писать его. На эту работу ушли годы, но учебник в итоге был переведен на все основные мировые языки и применялся в университетах по всему свету многие десятилетия после его издания. Он был оригинальным, богатым на прибаутки, рассуждения и чудачества. То был труд любви, и стремление Менделеева написать наилучший учебник подтолкнуло его сосредоточиться на вопросах, которые и привели к его великому открытию.

Первая запинка на пути Менделеева к идеальному учебнику – как организовать материал. Менделеев решил поделить элементы и их соединения на группы, или семейства, согласно их свойствам. Выполнив сравнительно простую задачу – описав галогены и щелочные металлы, – он задался вопросом, о какой совокупности элементов писать дальше.

В случайном порядке? Или, может, сформулировать принцип, в согласии с которым установить порядок?

Менделеев сражался с этой задачей, вглядываясь в глубины обширного химического знания в поисках подсказок, как могут соотноситься друг с другом различные группы элементов. Однажды в субботу он настолько ушел в работу, что провел без сна всю ночь и утро. Так ничего и не добился, но что-то подтолкнуло его записать названия элементов из групп кислорода, азота и галогенов, итого двенадцать элементов, на обороте конверта – в порядке увеличения их атомных масс.

И тут вдруг он заметил поразительную закономерность: список начинался с азота, кислорода и фтора – легчайших членов своих групп, а затем продолжился вторыми по массе, тоже по порядку, и так далее. Список, иными словами, сложился повторяющимся, или «периодическим», узором. И лишь два элемента этой закономерности не поддерживали.

Менделеев сделал свое открытие еще отчетливее, разместив группы элементов в ряд, а ряды друг над другом, и получилась таблица. (Ныне мы записываем группы колонками.) Правда ли есть в этом что-то? А если эти двенадцать элементов и впрямь образуют осмысленную последовательность, впишутся ли в эту схему остальные известные в то время пятьдесят один?

Менделеев с друзьями любил раскладывать карточные пасьянсы – располагать игральные карты в определенном порядке. Из карт получалась таблица, которая, как он впоследствии вспоминал, выглядит очень похоже на ту, из двенадцати элементов, которую он в тот день изобразил. Решив записать названия и атомные массы всех известных элементов на карты и попытаться составить из них таблицу, он разложил, по его словам, «химический пасьянс». Принялся перекладывать карты так и эдак, пытаясь разместить их в осмысленном порядке.

В подходе Менделеева был серьезный изъян. Во-первых, было неясно, к каким группам некоторые элементы принадлежат. Свойства других к тому времени оставались непонятыми. Были и разногласия в отношении атомных масс одних элементов, а массы, присвоенные другим элементам, – попросту ошибочны. А во-вторых, что важнее, были и элементы, которые еще предстояло открыть, и из-за этого предположенная закономерность давала сбой.

Все эти трудности усложняли Менделееву задачу, но было и еще кое-что – нечто более тонкое: не хватало оснований считать, что схема, основанная на атомных массах, – непременно рабочая, поскольку никто в то время не понимал, какой аспект химических свойств связан с атомной массой. (Теперь-то мы знаем, что это число протонов и нейтронов в атомном ядре, и что масса, приходящаяся на нейтрон, никак на химические свойства вещества, состоящего из тех или иных атомов, не влияет.) И вот тут-то упрямство Менделеева поддержало его страсть достичь цели: он продолжил сражаться, основываясь исключительно на интуиции и вере.

Работа Менделеева куда буквальнее многих других показывает: научный процесс – решение головоломок. Но она еще и иллюстрирует важное отличие: в отличие от головоломки, купленной в магазине, кусочки мозаики, которую складывал Менделеев, не стыковались друг с дружкой. Частично в науке и полностью – в новаторстве временами бывает важно не обращать внимание на особенности дела, вроде бы подсказывающие, что ваш подход никак не может быть состоятельным, и верить, что какой-нибудь обходной путь все же найдется, или что эти особенности не будут иметь значения. Менделеев, благодаря поразительной одаренности и чрезвычайной настойчивости, собрал свою картинку, переделав одни части мозаики и выдумав с нуля другие.

Представлять достижение Менделеева в героическом свете задним-то числом просто – видимо, так оно и выглядит в моем описании. Пусть ваши взгляды отдают безумием, если они действенны – мы сотворим из вас героя. Но тут есть и оборотная сторона: за века накопилось множество безумных схем, оказавшихся в итоге ошибочными. Работающих систем гораздо меньше, чем неработающих. Ошибочные быстро забываются, а часы, дни и годы работы тех, кто в них верил, потрачены, как оказывается, впустую. И часто мы зовем поборников этих систем неудачниками и чокнутыми. Но героизм – это готовность рисковать, и потому героизм исследования, успешного или провального, – в риске, который берем на себя мы, ученые и новаторы, а это долгие часы и дни, месяцы или даже годы яростной интеллектуальной борьбы, коя может привести к плодотворному завершению и результату, а может и нет.

Менделееву уж точно пришлось покорпеть. Элементы не встали на свои места так, как ему хотелось, но он отказался смириться с недееспособностью своей системы. Напротив, он стоял на своем и заключил, что те, кто мерил атомные массы, ошиблись, – и он смело вычеркнул известные величины и вписал то значение, с которым элемент занимал правильное место в его системе.

Самый дерзкий его вывод возник в отношении пустых ячеек в таблице – элементов с отвечающими этому месту в системе свойствами не было известно. Менделеев не только не отказался от своих соображений и не попытался изменить организующий принцип, он упрямо настаивал, что пустые ячейки – это пока не открытые элементы. Он даже предсказал свойства этих новых элементов – атомную массу, физические свойства, с какими другими элементами они могут взаимодействовать и какие сложные вещества образовывать – исключительно на основании того, в какой части таблицы эта пустая ячейка возникла.

К примеру, существовал зазор рядом с алюминием. Менделеев вписал туда неведомый элемент экаалюминий и предсказал, что, когда химики откроют экаалюминий, это будет блестящий металл, хорошо проводящий тепло, с низкой температурой плавления и массой одного кубического сантиметра ровно 5,9 граммов. Через несколько лет французский химик по имени Поль-Эмиль Лекок де Буабодран открыл в образце руды элемент, в точности совпадавший с описанием, за исключением массы кубического сантиметра – 4,7 граммов. Менделеев тут же послал Лекоку письмо, в котором сообщил, что образец был явно неочищенный. Лекок повторил анализ с новым образцом и добился тщательной очистки. На сей раз все сошлось с предсказанием Менделеева – 5,9 граммов на кубический сантиметр. Лекок назвал элемент галлием, в честь латинского названия Франции – Галлия.

Менделеев обнародовал свою таблицу в 1869 году, сначала в «Журнале Русского химического общества»[261], а затем – в почтенном немецком издании[262], под названием «Периодическая закономерность химических элементов». Помимо галлия, таблица включала в себя еще несколько на ту пору неизвестных элементов – ныне это скандий, германий и технеций. Технеций радиоактивен и до того редок, что его открыли лишь в 1937 году, синтезировав в циклотроне, разновидности ускорителя элементарных частиц, через тридцать лет после смерти Менделеева.



Оригинальная периодическая таблица Менделеева, опубликованная в 1869 году, и ее современный вид


Нобелевскую премию по химии впервые дали в 1901 году, за шесть лет до кончины Менделеева. Он не получил Нобелевскую премию, и это величайший промах Нобелевского комитета, поскольку Периодическая система – главный организующий принцип современной химии, открытие, сделавшее возможным наше освоение науки о веществе, это венец двухтысячелетней работы, начатой в лабораториях бальзамировщиков и алхимиков.

Но все же Менделеев стал членом еще более элитарного клуба. В 1955 году ученые в Беркли выделили всего десяток с чем-то атомов нового элемента, тоже в циклотроне, и в 1963 году назвали его менделевием, в честь автора великого открытия. Нобелевскую премию вручили более чем восьми сотням людей, но лишь шестнадцать ученых увековечены в Периодической таблице. И Менделеев – один из них, со своим личным местом в своей же таблице, под номером 101, совсем рядом с эйнштейнием и коперницием.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*